
AI-SPRINT

Docker Containers

Germán Moltó
Departamento de Sistemas Informáticos y Computación -

Instituto de Instrumentación para Imagen Molecular

gmolto@dsic.upv.es

https://www.grycap.upv.es/gmolto

mailto:gmolto@dsic.upv.es
https://www.grycap.upv.es/gmolto

Beyond Virtual Machines …

• Virtual machines have introduced numerous
advantages:

– Server consolidation, isolation between applications, etc.

• But:

– Virtual machine images are heavy and specific for each
hypervisor.

– They take (little) time to start.

– Virtualization overhead

• What if you could run processes on the same
host in isolation and securely?

2

Problem

3

• Developing distributed applications requires different
OS, programming languages, execution
environments, libraries, etc. and can be deployed on
multiple platforms.

•

Analogy with the Real World

4

http://disney.github.io/docker-training

http://disney.github.io/docker-training

Real-World Solution

5

http://www.amazon.com/The-Box-Shipping-Container-Smaller/dp/0691136408

http://disney.github.io/docker-training

http://www.amazon.com/The-Box-Shipping-Container-Smaller/dp/0691136408
http://disney.github.io/docker-training

Docker Containers

6

Containers

• A container is an encapsulation of an entire file
system that contains everything needed to run an
application (code, libraries, OS, tools, etc.)

• Instead of emulating hardware (such as VMs) they
use technologies such as cgroups and Linux kernel
namespaces to create the containers.

• Container Technologies:

– LXC – https://linuxcontainers.org

– Docker - https://www.docker.com

– rkt- https://coreos.com/rkt

7

https://linuxcontainers.org/
https://www.docker.com/
https://coreos.com/rkt/

Containers vs Virtual Machines

• Containers (PROS)
– Smaller image size

– Instant execution

– No virtualization overhead

– Encapsulates all
dependencies, ensuring
correct execution

– Write Once Run Anywhere*

• Containers (CONS)
– Unable to run Windows on

Linux

– Security isolation
• Host kernel sharing

8

Virtual machine Containers

* x86 con Linux 3.2+ ó 2.6.32+ para Fedora, CentOS, etc.

MV

Containers or Virtual Machines?

• For Linux virtualization scenarios on Linux, containers
can offer a very good advantage over virtual
machines

• In full virtualization scenarios (e.g. Windows over
Linux), virtual machines must be used.

• In the field of Cloud Computing, virtual machines are
used as computing capacity on which multiple
containers with the applications are then executed.

– Take advantage of the multiple vCPUs of a virtual machine.

9

What is Docker?

• Docker – https://www.docker.com/

• An open platform for developers and system
administrators to build, ship and run distributed
applications.

• Package an application with all its dependencies (OS,
libraries, applications, etc.) to be executed on
different platforms.

– Objective: Fast, consistent delivery of applications

• Deploy application runtime environments quickly
and repeatably.

10

https://www.docker.com/

Docker

• Docker has had
spectacular
growth in recent
years.

• Many adoption
scenarios.

•

11

• Although with difficulties
to monetize it.

– https://www.zdnet.com/article
/docker-is-in-deep-trouble/

https://www.zdnet.com/article/docker-is-in-deep-trouble/
https://www.zdnet.com/article/docker-is-in-deep-trouble/

Docker Components

• Docker consists of
an ecosystem of
tools around
Docker Engine.

• OCI (Open
Container
Initiative)

– https://www.openc
ontainers.org/

12

https://www.opencontainers.org/
https://www.opencontainers.org/

Docker Engine architecture

• Client and Docker
Host can coexist on
the same machine.

• Local vs remote
image registration
(e.g. Docker Hub).

13

Installing Docker Engine

curl -fsSL https://get.docker.com/ | sh

• There are other ways to install it:
– https://docs.docker.com/engine/installation/

14

https://get.docker.com/
https://docs.docker.com/engine/installation/

Docker Engine Basics

• Image

– It contains an OS distribution (e.g. Ubuntu 22.04) and a certain configuration
of packages/applications/data determined by the creator of the image.

• Docker Hub

– Image catalog and repository, accessible via CLI, web interface and REST API.

• Container

– It is an instance of a specific image executed as an isolated process on a
specific machine (Docker Host)

• Docker Host

– It is the machine that has installed Docker Engine and runs the containers.

• Docker Client

– The machine from which the deployment of Docker containers is requested
(can match the Docker Host). Also corresponds to the client tool for
interacting with Docker.

15

What can you do with Docker
Engine?

• Manage the container lifecycle

– start, stop, kill, restart, etc.

• Manage container images
– push, pull, tag, rmi, etc.

• Inspect/access the container
– logs, attach

• …

• And where can we find a catalog of Docker
images?

16

Docker Hub

• Repositories containing Docker
container images

• Automated Builds from GitHub

17

https://hub.docker.com

https://hub.docker.com/

Docker 101: Containers (1)

• Docker automatically downloads the alpine:latest image from
Docker Hub

• Stores it in the Docker Engine local registry of the Docker Host
• Run the container and, within it, the command, displaying the

output on the screen.

18

Docker 101: Images (1)

• Docker images contain (certain libraries) + Apps.

• They can be tagged and stored in different Docker registries.
• https://docs.docker.com/registry/deploying/

19

https://docs.docker.com/registry/deploying/

Docker 101: Images (2)

• Size matters.

– Reduction to one quarter of the size of
the original image when using Alpine
base OS as a base OS against other
distributions (e.g. Ubuntu, CentOS, etc.)

20

https://hub.docker.com/r/_/alpine/
https://alpinelinux.org/

FROM debian:jessie

FROM alpine:3.4

https://hub.docker.com/r/_/alpine/
https://alpinelinux.org/

Docker 101: Containers (2)

• Interactive session with a Docker container

– docker run -it ubuntu:22.04 bash

– This container can be used like any machine:
install applications, output to the Internet, etc.

21

Docker 101: Image Building

• Option 1:

– Modify a running container, exit the container and
save the contents of the container as a new image
that can be saved in a registry (own or
DockerHub).

– docker exec; docker commit; docker push

• Option 2:

– Create the Docker container image from a
Dockerfile, which contains a recipe for installing
the application on a given OS.

22

Docker 101: Dockerfile (1)

• The Dockerfile is based on an
existing image and describes the
application installation process.
– docker build -t cellar-mem .

23

Docker 101: Dockerfile (2)

• Dockerfile example to install Infrastructure Manager

24

FROM ubuntu:22.04

MAINTAINER Miguel Caballer <micafer1@upv.es>

LABEL version="1.5.1"

LABEL description="Container image to run the IM service. (http://www.grycap.upv.es/im)"

EXPOSE 8899 8800

RUN apt-get update && apt-get install -y gcc python-dbg python-dev python-pip libmysqld-dev python-
pysqlite2 openssh-client sshpass libssl-dev libffi-dev python-requests

RUN pip install setuptools --upgrade -I

RUN pip install CherryPy==8.9.1

RUN pip install pyOpenSSL --upgrade -I

RUN pip install MySQL-python msrest msrestazure azure-common azure-mgmt-storage azure-mgmt-compute
azure-mgmt-network azure-mgmt-resource

RUN pip install IM

COPY ansible.cfg /etc/ansible/ansible.cfg

CMD im_service.py https://github.com/grycap/im/blob/master/docker/Dockerfile

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

http://www.grycap.upv.es/im
https://github.com/grycap/im/blob/master/docker/Dockerfile
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Usage Example: Docker-based CI

• Developers working on the devel
branch of a GitHub repo.

• A PR on the master branch
triggers the CI in Jenkins/Travis.

• Docker images in Docker Hub are
used to execute the Jenkins jobs
in the right execution env.

• Merging the PR into the master
branch triggers an Automated
Build to create a new Docker
image in Docker Hub.

25

GitHub
Application

(Repo)
master

devel

b
ra

n
ch

es

Application
Developers

Lead
Developer

commit

Pull Request (PR)

Jenkins

Triggers Testing

Docker
Hub

Application
Docker Image

(Repo)

ta
gs - latest

- 1.0.6

Merge PR

Automated Build

Jenkins Images
(Repo)

Pull Images for Testing

On-Premises
 Cloud

VM

Unit Testing /
 Integration

Testing

Docker

App Testing

Provision Resources
for Testing

ubuntu-sshd:14.04
centos-sshd:7

Microservices (I)

• Microservices is a software architecture pattern for designing
applications as a set of deployable services independently.

26http://martinfowler.com/articles/microservices/images/sketch.png

• Services with a
single function

• Decentralized
accountability

• Multiple languages,
libraries, etc.

• REST API + HTTP

• Stateless vs Stateful

• Independent
updates by service.

http://martinfowler.com/articles/microservices/images/sketch.png

Microservices (II)

• Microservices-based architectures typically use:
– Containers to encapsulate dependencies

– CI/CD strategies for frequent updates.

27

• Application as a set of
containers that run
microservices and can be
scaled and updated.

Microservices Death Stars

28

Container Management Platforms

• Managing multiple containers requires the use of container
management platforms.

• Main
– Open source

• Docker Swarm

• Kubernetes

• Apache Mesos
– Chronos, Marathon

• Nomad

– Managed
• Amazon ECS

• Amazon EKS

• Azure Container Service

• Google Cloud Run

29

Kubernetes

• Developed by Google
and released as open
source.

• Deploy, scale, and
manage containerized
applications.

• Higher learning curve
but higher adoption

30

AI-SPRINT

Serverless Computing

Germán Moltó
Departamento de Sistemas Informáticos y Computación -

Instituto de Instrumentación para Imagen Molecular

gmolto@dsic.upv.es

https://www.grycap.upv.es/gmolto

mailto:gmolto@dsic.upv.es
https://www.grycap.upv.es/gmolto

Cloud Services and Applications

• User cloud services and applications require
management:

– Data (i.e. status, in the form of files, databases,
memory values, etc.)

– Computing (resources and execution
environments).

• Resilient/fault-tolerant application: Manage
Replication and Distribution of both data and
computing.

32

Object-Oriented Storage Systems

• Amazon S3 democratized access
access to scalable, low-cost, long-
term storage through simple APIs.

• AWS is responsible for capacity
planning, storage provisioning, fault
tolerance, and long-term durability
through replication.

33

Amazon Simple Storage
Service (S3)

Bucket with
objects

Abstracting Computing

• Cloud computing (e.g. AWS) enabled the introduction of a
virtualized representation of a classic datacenter.
– Compute capacity provisioning and, sometimes (IaaS) configuration is

required for application deployment.

• Isn’t it possible to abstract the infrastructure further so that
an application could run natively on top of the Cloud without
needing to know the details of the underlying (virtualized)
infrastructure?
– Just like Amazon S3 does for storage

• Why not have something similar for computing?

34

AWS Lambda

• AWS Lambda (https://aws.amazon.com/es/lambda/) allows
you to run functions in response to events so that scaling is
done automatically.
– Stateless functions executed in micro-VMs with a maximum duration

of 15 minutes, written in different programming languages (Node.JS,
Python, Java, C#, Go).

– Event: Invocation of REST API, file upload to S3, etc.

• Advantage: No dealing with ELBs, auto-scaling pools, EC2
instances, etc.

• Disadvantage: Requires redesigning the application.

• Price
– In blocks of 1 ms. Pay per use (real). No costs when not in use. Free

usage tier of 1M requests and 400,000 GB/second of computation per
month per user.

–

35

About the AWS Lambda Runtime
Environment (I)

• AWS Lambda uses microVMs (Firecracker) with a series of
predefined applications on top of which it executes the code
of the Lambda functions
– https://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html

– For testing, there is an AMI pre-configured that
environment:
• Node.js

• Java

• Python

• .NET Core (C#)

• Restrictions
– 3000 concurrent executions

– [128, 10240] MB RAM (1 MB increments)

– [512 , 10240] MB of non-persistent space* in /tmp

– 15 minutes maximum runtime

–

36

https://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html

AWS Lambda: Triggers

• Event Sources:

– CloudWatch
Events

– S3

– DynamoDB

– Kinesis

– SNS

– API Gateway

– …

37

AWS Lambda: Monitoring

• It allows to detect throttling problems:

– Limit of 3000 concurrent executions per account
and per region. 38

AWS Lambda: Execution Types

• There are two types of execution in AWS
Lambda

– https://docs.aws.amazon.com/es_es/lambda/late
st/dg/API_Invoke.html

• RequestResponse

– Synchronous invocation

• Async

– Asynchronous invocation. It will be used for event
processing.

39

https://docs.aws.amazon.com/es_es/lambda/latest/dg/API_Invoke.html
https://docs.aws.amazon.com/es_es/lambda/latest/dg/API_Invoke.html

AWS Lambda: Throttling

• Throttling occurs when the maximum number
of concurrent invocations (function or
account-level) is exceeded

– Synchronous invocation: Error HTTP 429

– Asynchronous invocation: AWS Lambda
automatically retries the event for up to 6 hours.

40

AWS Lambda: CloudWatch Logs

• Centralize, store,
and search
Lambda function
log entries.

41

Stateful Lambda functions

• AWS Lambda
recently
introduced
support for
Amazon EFS (NFS
as a Service)

• Allows you to
introduce
persistence
between Lambda
functions.

• Scalable shared
file system

• Serverless
supercomputing.

42

https://dev.to/imohd23/how-to-use-efs-with-aws-lambda-2057

• Potential use cases:
• https://lumigo.io/blog/unlocking-more-

serverless-use-cases-with-efs-and-lambda/

https://dev.to/imohd23/how-to-use-efs-with-aws-lambda-2057
https://lumigo.io/blog/unlocking-more-serverless-use-cases-with-efs-and-lambda/
https://lumigo.io/blog/unlocking-more-serverless-use-cases-with-efs-and-lambda/

Peeking behind the curtains of AWS
Lambda

43

https://d1.awsstatic.com/whitepapers
/Overview-AWS-Lambda-Security.pdf

FireCracker - https://firecracker-microvm.github.io/

https://dl.acm.org/doi/10.5555/3277355.3277369

https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://firecracker-microvm.github.io/
https://dl.acm.org/doi/10.5555/3277355.3277369

Serverless Application

• Combine serverless services to produce
applications that have a very low TCO (Total
Cost of Ownership).

•

44

Storage
-

Amazon
S3

Compute
-

AWS
Lambda

Database
-

Amazon
DynamoDB

Gateways
-

Amazon API
Gateway

Queues
-

Amazon
SQS

Messaging
-

Amazon
SNS

Internet of Things
-

AWS IoT

Streaming Analytics
-

Amazon Kinesis

User Management
-

Amazon
Cognito

Machine Learning
-

Amazon Machine
Learning

• Web application

• Alexa Skill

• Chatbot

• AWS IoT Button

• …

Exposing Functions to the Internet

• Use an API to be able to invoke the function
remotely. Challenges in:

– Manage multiple API versions

– Access authorization

– Increases in invocation traffic
45

https://es.slideshare.net/AmazonWebServices/building-apis-with-amazon-api-gateway

https://es.slideshare.net/AmazonWebServices/building-apis-with-amazon-api-gateway

API Gateway

• API Gateway - https://aws.amazon.com/es/api-
gateway/

– Creation, publication, maintenance, monitoring, protection
of APIs at any scale.

• Allows

– Create a unified API for multiple microservices.

– Protection against DDoS and throttling attacks to avoid
back-end problems

– AuthZ/AuthN requests using Cognito (and Lambda)

• Limit
– 29 seconds maximum invocation time

46

https://aws.amazon.com/es/api-gateway/
https://aws.amazon.com/es/api-gateway/

Serverless Architecture Examples

• Web application to obtain weather information
stored in DynamoDB offering a REST API created with
API Gateway.

– The Lambda function is executed by invoking API methods
(GET, POST, etc.)

–

47

Serverless Web Application
Architecture

48

Beware of the costs

https://twitter.com/coryodaniel/status/1029414668681469952
49

• For high service usage rates it may
be interesting to use a traditional
VM-based architecture

• Price reduction at the cost of reducing
elasticity.

https://twitter.com/eoins/status/1381643758031273988

https://twitter.com/coryodaniel/status/1029414668681469952
https://twitter.com/eoins/status/1381643758031273988?s=20

AI-SPRINT Design

Francesco Lattari

francesco.lattari@polimi.it

50

mailto:francesco.lattari@polimi.it

AI Application Design Workflow

51

Application
Dev

Application

Deployment

Application
Developer

Application
Manager

AI-SPRINT
Runtime

Application
Architect

Automated

Application

Profiling &
Performance

Models Training

Application
Architect

AI-SPRINT
Runtime

AI-SPRINT Design

Problem solved:

● Automatic generation of configuration files for AI-SPRINT design and runtime tools
● High-level abstractions to constraint the application deployment
● Advanced functionalities to:

• Configure monitoring files
• Provide automatic partitioning of AI models
• Provide automatic generation of alternative

deployments
• Generate AI-SPRINT Drift Detector component

Motivations:

● Standardize the architectures of the applications
● Provide a simple interface between the user and the AI-SPRINT framework
● Need for advanced functionalities driven by AI requirements

52

Without AI-SPRINT

• The developer of the AI application must prepare

the application organizing the files in a non-

standard non-portable structure

• The developer must explicitly define each possible

deployment

• No easy ways to define QoS constraints to drive

the deployment

• The user must involve an AI expert to provide

partitioned models and to manage them

• The user is not able to easily design detection

algorithms for detecting data drift at runtime

53

AI-SPRINT Design main contributions

AI-SPRINT Design

Without AI-SPRINT

• The developer of the AI application must prepare

the application organizing the files in a non-

standard non-portable structure

• The developer must explicitly define each possible

deployment

• No easy ways to define QoS constraints to drive

the deployment

• The user must involve an AI expert to provide

partitioned models and to manage them

• The user is not able to easily design detection

algorithms for detecting data drift at runtime

54

AI-SPRINT Design main contributions

AI-SPRINT Design

With AI-SPRINT

• Simple interface to provide application

components and workflow following a well-

defined template

• The application architect easily defines the

available resources

• Alternative deployments are automatically

generated

• High-level abstractions to define QoS constraints

• SPACE4AI-D Partitioner allows automatic

partitioning of neural networks

• Automatic design of runtime drift detection

algorithms can be enabled

55

Mask detection application

Local execution time constraint:
Blurry Faces: 15 s

Global execution time constraint:
Blurry Faces + Mask Detector : 20 s

56

AI-SPRINT Design Input Files

Input Files

57

AI-SPRINT Design Demo: Application Preparation and Design

Demo steps:
1. Generate new AI-SPRINT application named mask_detection_app

using the available Docker image and application template. AI-
SPRINT Design is available as part of the AI-SPRINT Studio.

1. Add components’ implementation, application DAG and
candidate resources files to the application project

1. Run AI-SPRINT Design

1. Inspect the generated files

http://drive.google.com/file/d/1U0h-M0HzMzWOwF8JdXZjuMWDQbjk1e4T/view

www.ai-sprint-project.eu

AI-SPRINT Design Result

Output Files

59

Links:

GitLab repository for AI-SPRINT Studio: https://gitlab.polimi.it/ai-sprint/ai-sprint-studio

Docker container with AI-SPRINT Studio: registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio

Link to source project files: https://gitlab.polimi.it/ai-sprint/ai-sprint-examples/-
/tree/main/mask_detection_local_global_constraints

References & Links

https://gitlab.polimi.it/ai-sprint/ai-sprint-studio
http://registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio
https://gitlab.polimi.it/ai-sprint/ai-sprint-examples/-/tree/main/mask_detection_local_global_constraints
https://gitlab.polimi.it/ai-sprint/ai-sprint-examples/-/tree/main/mask_detection_local_global_constraints

TOSCARIZER

Miguel Caballer

micafer1@upv.es

60

mailto:micafer1@upv.es

AI Application Design Workflow

61

Application
Dev

Application

Deployment

Application
Developer

Application
Manager

AI-SPRINT
Runtime

AI-SPRINT
Design

Application
Architect

Automated

Application

Profiling &
Performance

Models Training

Application
Architect

AI-SPRINT
Runtime

AI Application Design Workflow

62

Application
Dev

Application

Deployment

Application
Developer

Application
Manager

AI-SPRINT
Runtime

Application
Architect

Automated

Application

Profiling &
Performance

Models Training

Application
Architect

AI-SPRINT
Runtime

TOSCARIZER
& Infrastructure

Manager

Application Deployment

Problem solved:
● Help Application Manager to generate component container images.
● Generate TOSCA templates with the full description of the virtual

infrastructures required by the application
● Deployment of all application components along the computing continuum

Motivations:
● Provisioning and configuring complex virtual infrastructures is a complex task

due to the multiple API and configurations involved

63

Without AI-SPRINT

• App. M. has to manually create Dockerfiles

and build/push them for all the required

architectures (AMD64, ARM64)

• App. M. has to manually create TOSCA

templates to enable the deployment of

application components that requires

advanced knowledge on TOSCA standard.

• App. Manager has to access multiple Cloud

back-ends with different interfaces (e.g.

CLI, GUI, API).

64

TOSCARIZER main contributions

Application Deployment

With AI-SPRINT

• Container images are automatically built and
pushed for all components only for the needed
architectures used in the deployments.

• TOSCA templates are automatically generated for
all the components with the exact requirements
specified by the application developed in the
application description files.

• Automated deployment/Undeployment of OSCAR
services on pre-provisioned OSCAR clusters at the
Edge of the network and provision whole OSCAR
clusters on the available Cloud back-ends

Without AI-SPRINT

• App. M. has to manually create Dockerfiles

and build/push them for all the required

architectures (AMD64, ARM64)

• App. M. has to manually create TOSCA

templates to enable the deployment of

application components that requires

advanced knowledge on TOSCA standard.

• App. Manager has to access multiple Cloud

back-ends with different interfaces (e.g.

CLI, GUI, API).

65

TOSCARIZER main contributions

Application Deployment

66

TOSCARIZER

● New developed component to help Application Manager to deploy Inference
services.

○ Creates the Docker images for all application components considering all
possible destination architectures (AMD64 and ARM64).

○ Creates TOSCA templates to deploy, not only the inference services on
top of OSCAR clusters, but also all the needed underlying cloud
infrastructure (VMs, K8s cluster, OSCAR …).
■ Deploys the full application workflow.

○ Interacts with the IM to finally deploy/undeploy all the inference
infrastructure.

67

Type of deployments:

● (1) Edge device:
○ Only deploy OSCAR service

on top of an existing cluster.
● (2) Edge Node/Edge Device:

○ Accessed via SSH.
○ K8s + OSCAR + OSCAR

service.
● (3) Cloud (On-premises/Public)

○ Deploy VM + K8s + OSCAR +
OSCAR service.

● (4) AWS Lambda
○ Deploy FaaS function.
○ Using SCAR.

Cloud Continuum Support

● It takes as input the output of
the AI-SPRINT design tool +
○ Physical nodes:

■ MinIO credentials
● In case of edge device

■ SSH credentials
● In case of edge node

■ AWS S3 info
● In case of Lambda

○ IM auth file:
■ Cloud Credentials

Application
Manager Cloud providers

Credentials

Physical Nodes

im/auth.dat

common_config/physical_nodes.yaml

ComputationalLayers:

computationalLayer1:

number: 1

Resources:

resource1:

name: RaspPi

minio:

endpoint: https://minio.oscar.net

access_key: minio

secret_key: pass

oscar:

name: oscar-test

id = one; type = OpenNebula; host = server:2633; username = user; password = pass

id = oscar1; type = OSCAR; host = https://oscar.net; username = user; password = pass

type = InfrastructureManager; username = user; password = pass

type = EC2; username = AK; password = SK

Application and Infrastructure deployment

69

Application and Infrastructure deployment

Demo steps:
1. Build & push the Docker images for

all the components / partitions
2. Create the corresponding TOSCA

files to deploy all the application
components (base or optimal cases)

3. Perform the deployment through
the IM

4. Test the application workflow
5. Undeploy infrastructures.

http://drive.google.com/file/d/1s9Cgfb0-ts9Bv00XP3zCpzzp_G0ojopB/view

70

References:

[1] Miguel Caballer, Germán Moltó, Amanda Calatrava, and Ignacio Blanquer. Infrastructure Manager: A TOSCA-Based
Orchestrator for the Computing Continuum. Journal of Grid Computing, 21:51, 9 2023.
https://link.springer.com/article/10.1007/s10723-023-09686-7

Links:

GitLab repository: https://gitlab.polimi.it/ai-sprint/toscarizer

Integrated in docker AI-SPRINT Studio container: registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio

References & Links

https://link.springer.com/article/10.1007/s10723-023-09686-7
https://gitlab.polimi.it/ai-sprint/toscarizer
http://registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio

Programming
Distributed Computing
Platforms with
COMPSs and dislib

Daniele Lezzi

Workflows and Distributed Computing

Barcelona Supercomputing Center

daniele.lezzi@bsc.es

71

72

• COMPSs overview

• Dislib overview

• The ds-array data structure

• Supported methods

• Some results

• Machine learning basics

• Typical workflow in dislib

• Sample code: C-SVM

• Browsing the dislib website

Outline

73

Programming Framework: PyCOMPSs

● The application developer provides a sequential Python script whose functions are annotated through decorators;

these annotations are used by the runtime to run those parts of code as asynchronous parallel tasks code.

● These annotations describe the type of parameters and constraints on the resources. PyCOMPSs also provides a set of

APIs to control the flow of the applications (fault tolerance and synchronisation points).

● PyCOMPSs processes the information provided by the user through Python decorators and generates a dependency

graph.

74

Dislib: parallel machine learning

● dislib: Collection of machine learning algorithms

○ Unified interface, inspired in scikit-learn (fit-predict)

○ Based on a distributed data structure (ds-array)

○ Unified data acquisition methods

○ Parallelism transparent to the user –

PyCOMPSs parallelism hidden

○ Open source, available to the community

● Provides multiple methods:

○ data initialization

○ Clustering

○ Classification

○ Model selection, ...

75

Distributed array (ds-array)

● 2-dimensional structure (i.e., matrix)

○ Divided in blocks (NumPy arrays)

● Works as a regular Python object

○ But not always stored in local memory!

● Methods for instantiation and slicing with the same syntax of numpy

arrays:

○ Internally parallelized with PyCOMPSs:

○ Loading data (e.g. from a text file)

○ Indexing (e.g., x[3], x[5:10]

○ Operators (e.g., x.min(), x.transpose())

● ds-arrays can be iterated efficiently along both axes

● Samples and labels can be represented by independent distributed arrays

● Data not always in memory:

○ Inherent support for out-of-core operations, enabling large data-sets

76

Supported methods

● Array creation routines

○ Multiple routines to create ds-arrays from

random, existing data, files, ...

● Utilities to access arrays, scale, apply a function, ...

● Matrix decomposition:

○ Principal Component Analysis (PCA)

○ QR

○ TSQR

○ SVD

● Clustering:

○ DBSCAN

○ K-Means

○ Gaussian Mixture

○ Daura (Gromos)

● Classification

○ CascadeSVM

○ RandomForest classifier

○ DecisionTree classifier

● Recommendation

○ Alternating least squares (ALS)

● Regression

○ Linear regression

○ LASSO

○ RandomForest regressor

○ DecisionTree regressor

● Neighbour queries:

○ k-nearest neighbours

● Model selection:

○ GridSearch

○ RandomizedSearch

○ K-fold

77

dislib sample results - K-means clustering

78

Machine Learning basics

● Unsupervised

○ Find unknown patterns in (unlabelled)

data

○ Example: clustering

● Supervised

○ Learn a decision function from a labelled

data

○ Example: classification

79

Estimators

● Based on scikit-learn

● Estimator = anything that learns from data (labelled or unlabelled)

● Two main methods:

○ fit → learns something from data (e.g., a decision function)

○ predict → provides new information based on a fitted model

(e.g., labels data based on the computed decision function)

80

Typical workflow

81

Internals: ds-array implementation

● Implemented as an object, with main parameters:

○ Block size: shape of a regular block

○ Blocks: list of lists of NumPy ndarray (or spmatrix)

○ Sparse: whether the block is sparse or not

● Methods

○ Most of the methods for array creation or transformation are parallelized with PyCOMPSs:

82

Sample code: C-SVM

83

Sample code: C-SVM

84

Sample user code: C-SVM

85

C-SVM Task graph

86

C-SVM Tracefile

Optimization and
runtime management
of AI applications

Federica Filippini, Hamta Sedghani,
Enrico Galimberti

Politecnico di Milano, Italy

{name}.{lastname}@polimi.it

Giuseppe Caccia

Cefriel, Italy

caccia@cefriel.it

87

mailto:%7bname%7d.%7blastname%7d@polimi.it

88

AI Application Design Workflow

Application
Dev

Application

Deployment

Application
Developer

Application
Manager

AI-SPRINT
Runtime

Application
Architect

Automated

Application

Profiling &
Performance

Models Training

Application
Architect

AI-SPRINT
Runtime

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

89

AI Application Design Workflow

Application
Manager

AI-SPRINT
Runtime

Application
Architect

AI-SPRINT
Runtime

Opt. Resource
Selection

&
Component
Placement

AI-SPRINT
Runtime

Optimal
configuration

deployed.
Application in

production

AI-SPRINT
Runtime

Infrastructure

Provider & Sysops

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

90

• Goal: predicting the response time of application components on the candidate resource
configurations

• Why? To support the selection of the optimal placement, minimizing costs and
guaranteeing performance constraints

• How? Several strategies:

– Analytical models (e.g., M/M/1, M/G/1,…)

– Machine Learning-based models

Performance modeling

▲Limited profiling
required

▲No training time
▲Fast execution

▼Based on assumptions
that may not hold in
practical scenarios

▲Accurate
independently on
theoretical
assumptions

▲Specific for the current
component/resource
pair

▼Need to be periodically
re-trained

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

91

Sample use-case application

92

• Resource selection & component placement problem

– Which resources to use at each computational layer

• How many Virtual Machine instances

– Which neural network deployment to consider for each
component

– Where to execute each component partition

• at design time…

– Based on the expected input workload

– To dimension the resources & avoid QoS constraints
violations

Design-time and runtime optimization

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

93

• Resource selection & component placement problem

– Which resources to use at each computational layer
• How many Virtual Machine instances

– Which neural network deployment to consider for each
component

– Where to execute each component partition

• at design time…

– Based on the expected input workload
– To dimension the resources & avoid QoS constraints

violations

• …and at runtime!

– In response to workload variations that induce resource
saturation/underutilization

Design-time and runtime optimization

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

94

AI-SPRINT tools

“A Design-time Tool for AI Applications Resource Selection in
Computing Continua”

“A Runtime Management Tool for AI Applications Component
Placement and Resource Scaling in Computing Continua”

“Profiling and Predicting the Performance of Function as a
Service-based Applications in Computing Continua”

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

OSCAR-P

and Performance Models generation

Federica Filippini, Enrico Galimberti

{name}.{lastname}@polimi.it

95

mailto:%7bname%7d.%7blastname%7d@polimi.it

96

AI Application Design Workflow

Application
Dev

Application

Deployment

Application
Developer

Application
Manager

AI-SPRINT
Runtime

Application
Architect

Automated

Application

Profiling &
Performance

Models Training

Application
Architect

AI-SPRINT
Runtime

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

97

Problem solved:

– Automatic application performance profiling, with
parameters set declaratively in a configuration file

– Infrastructures are automatically deployed and
configured, thanks to the integration with IM

– Dataset preparation and ML models training is also
fully automated

Motivations:

– Deploying and configuring multiple infrastructures is a
complex task

– Profiling an application on multiple configurations
manually is extremely time consuming

Automatic Application Profiling and ML Models Training

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

98

• SeBS [1] (Serverless Benchmark Suite) aims at being the first comprehensive benchmarking
tool that systematically supports a wide array of applications and cloud resources,
including commercial providers such as AWS, Azure, and Google Cloud.

• EdgeBench [2] instead analyzes two of them, Amazon AWS Greengrass and Microsoft
Azure IoT Edge, using different performance metrics, and also compares the performance
of the edge frameworks to the respective cloud-only implementations.

• DeFog [3] presents a benchmarking tool that focuses on testing an application across a
cloud-only, edge-only and cloud-edge, by comparing the performance across the different
deployments allows to gain insight on potential improvements. The tool collects metric on
the latency of the application, both for communication and computation, under normal
conditions and under stress, with the aim of understanding how the services that make up
an application can be better distributed across the computing continuum.

[1] M. Copik, G. Kwasniewski, M. Besta, et al., Sebs: A serverless benchmark suite for function-as-a-service computing, in: ICM, 2021, pp. 64–
78.

[2] A. Das, S. Patterson, M. Wittie, Edgebench: Benchmarking edge computing platforms, in: UCC, IEEE, 2018, pp. 175–180.

[3] J. McChesney, N. Wang, A. Tanwer, E. de Lara, B. Varghese, Defog: fog computing benchmarks, in: Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing, 2019, pp. 47–58.

State Of The Art

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

99

• SuanMing[4] is an integrated framework for learning regressors using different algorithms
(Random Forest, Nearest Neighbor Regression, Ridge Regression, and Support Vector
Regression) of microservice-based systems running in public and private clouds, with the
end goal of identifying potential sources of performance loss in complex applications.

• Another example of performance modelling of FaaS systems is provided by Mahmoudi et
al. [5], which proposed the creation of a model to predict some performance metrics by
considering the application average response time for warm and cold requests, the
requests arrival rate, and the system expiration threshold.

[4] J. Grohmann, M. Straesser, A. Chalbani, et al., Suanming: Explainable prediction of performance degradations in microservice applications, in: ICPE, 2021, pp.
165–176.

[5] N. Mahmoudi, H. Khazaei, Temporal performance modelling of serverless computing platforms, in: WoSC, 2020, pp. 1–6.

State Of The Art

OSCAR-P is focused on benchmarking the OSCAR framework,
which can be deployed on top of any commercial cloud → it is

cloud provider agnostic

OSCAR-P can provide the average execution time of an application
workflow with acceptable precision (MAPE lower than 25%) even

for unseen configurations and with a limited testing campaign

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

100

OSCAR-P

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

101

OSCAR-P

Required input:

• Physical and virtual resources
description

• Application components
description

• Application parameters and input
data

• Machine Learning models
hyperparameters

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

102

OSCAR-P

Cluster configuration:

Automatically performed relying on the
Infrastructure Manager and OSCAR

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

103

OSCAR-P

Component profiling:

Both the full application
workflow and the single
components are profiled
on the required
resources

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

104

OSCAR-P

ML-based performance
models generation:

Regression models:
• Ridge Regression
• Decision Tree
• Random Forest
• XGBoost
• Support-Vector Regression
• Stepwise
• Non-Negative Least Squares

Validation techniques:
• HoldOut
• Interpolation
• Extrapolation

Feature augmentation
/ SFS

Hyperparameter tuning

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

105

• 2-components application:

• Profiling data collected on the single components & the entire workflow

• Performance models tested on:

– interpolation and extrapolation capabilities

– predicting the application response time given the
components data

Experimental setup

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

106

• blur-faces: MAPE = 3.34% • mask-detector: MAPE = 10.14%

Experimental results: Interpolation

AI-SPRINT MOOC - Optimization & runtime management of AI
applications

107

• Full workflow: MAPE = 3.13% • Combined models: MAPE = 17.08%

Experimental results: Interpolation

AI-SPRINT MOOC - Optimization & runtime management of AI
applications

108

• Training set • Predictions: MAPE = 9.75%

Experimental results: Extrapolation

AI-SPRINT MOOC - Optimization & runtime management of AI
applications

109

[1] M. Copik, G. Kwasniewski, M. Besta, et al., Sebs: A serverless benchmark suite for function-as-a-service computing, in: ICM, 2021, pp. 64–78.

[2] A. Das, S. Patterson, M. Wittie, Edgebench: Benchmarking edge computing platforms, in: UCC, IEEE, 2018, pp. 175–180.

[3] J. McChesney, N. Wang, A. Tanwer, E. de Lara, B. Varghese, Defog: fog computing benchmarks, in: Proceedings of the 4th ACM/IEEE Symposium on Edge
Computing, 2019, pp. 47–58.

[4] J. Grohmann, M. Straesser, A. Chalbani, et al., Suanming: Explainable prediction of performance degradations in microservice applications, in: ICPE, 2021, pp.
165–176.

[5] N. Mahmoudi, H. Khazaei, Temporal performance modelling of serverless computing platforms, in: WoSC, 2020, pp. 1–6.

[6] E. Galimberti, B. Guindani, F. Filippini, et al., “OSCAR-P and AMLLibrary: Performance Profiling and Prediction of Computing Continua Applications,” in
Companion of the 2023 ACM/SPEC International Conference on Performance Engineering, ser. ICPE ’23 Companion, Coimbra, Portugal: Association for Computing
Machinery, 2023, pp. 139–146, isbn: 9798400700729. doi: 10.1145/3578245.3584941.

References & Links

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

SPACE4AI-D

System PerformAnce and Cost Evaluation on

Cloud for AI applications Design

Federica Filippini, Hamta Sedghani

{name}.{lastname}@polimi.it

110

mailto:%7bname%7d.%7blastname%7d@polimi.it

111

AI Application Design Workflow

Application
Manager

AI-SPRINT
Runtime

Application
Architect

AI-SPRINT
Runtime

Opt. Resource
Selection

&
Component
Placement

AI-SPRINT
Runtime

Optimal
configuration

deployed.
Application in

production

AI-SPRINT
Runtime

Infrastructure

Provider & Sysops

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

112

Problem solved:

– Automatic exploration of design alternatives to
minimize costs

– Cope with technology constraints, performance and
privacy requirements

– Identify optimal resources and component placement
at each layer of the computing continuum

Motivations:

– Computing resources are heterogeneous

– Efficient component placement and resource allocation
are crucial to orchestrate at best the continuum
resources

Optimal Component Placement & Resource Selection

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

113

• [1] defines a serverless application workflow as a Directed Acyclic Graph (DAG) and
proposes two heuristic algorithms to solve two optimization problems: (i) optimize the cost
of serverless applications with DAG structure under performance constraint, and (ii)
optimize the performance under a budget constraint

• [2] develops a Mixed Integer Non-Linear Programming (MINLP) to solve a task allocation
problem among end-users’ device, fog and Cloud, minimizing the energy consumption
while guaranteeing delay constraints

• [3] tackles the service-placement problem to minimize migration, bandwidth and
computation costs while fulfilling service performance requirements. Authors determine
the minimum number of CPU resources required to meet the latency requirements, and
formalize the service placement problem as an Integer Linear Program (ILP)

[1] C. Lin and H. Khazaei, "Modeling and Optimization of Performance and Cost of Serverless Applications," in IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 3, pp. 615-632, 1 March 2021, doi: 10.1109/TPDS.2020.3028841.

[2] B. Kopras, B. Bossy, F. Idzikowski, P. Kryszkiewicz, and H. Bogucka. Task allocation for energy optimization in fog computing networks with
latency constraints. IEEE Transactions on Communications, 70(12):8229–8243, 2022.

[3] I. Cohen, C. F. Chiasserini, P. Giaccone, and G. Scalosub. Dynamic service provisioning in the edge-cloud continuum with bounded
resources. IEEE/ACM Transactions on Networking, pages 1–16, 2023.

State Of The Art

SPACE4AI-D is one of the first proposals to consider resource
contention in determining the optimal component placement for

AI applications

SPACE4AI-D considers multiple candidate neural network
deployments given by the possibility of partitioning components

at different layers according to
network and load conditions

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

114

SPACE4AI-D

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

115

SPACE4AI-D

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

116

SPACE4AI-D

Random Greedy (RG) algorithm to
generate a pool of good-quality
initial solutions

+

Heuristic algorithms to reduce the
costs:
• Local Search (LS)
• Tabu Search (TS)
• Simulated Annealing (SA)
• Genetic Algorithms (Gas)

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

117

Application components model and QoS requirements

• AI applications are modeled as Directed Acyclic Graphs

• Performance metric: response time
• Local QoS constraints: related to single components

• Global QoS constraints: related to sequences of consecutive components

Node: AI application component

Node label: incoming load

Edge: precedence relation between
components

Edge label: <transition probability,
data transfer>

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

118

• Edge devices, Cloud VMs and FaaS configurations, grouped in computational layers and
characterized by different memory capacity

• Communications happen through network domains with different access delay &
bandwidth

• Edge costs: amortized investment costs

• Cloud VM costs: per-second costs according to Cloud providers pricing models

• FaaS costs: GB-second costs depending on memory size, functions duration, total number
of invocations

Resources model and system costs

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

119

• Edge devices, Cloud VMs and FaaS configurations, grouped in computational layers and
characterized by different memory capacity

• Communications happen through network domains with different access delay &
bandwidth

• Edge costs: amortized investment & mainteinance costs

• Cloud VM costs: per-second costs according to Cloud providers pricing models

• FaaS costs: GB-second costs depending on memory size, functions duration, total number
of invocations

Resources model and system costs

Response time computation:
• Edge & Cloud VMs: demanding time without resource contention & individual M/G/1 models
• FaaS: average execution time for each component according to [4]
OR
• Machine Learning-based performance models

+ Network delays due to data transmissions

Percentage error between 10% and 30%

[4] N. Mahmoudi and H. Khazaei, "Performance Modeling of Serverless Computing Platforms," in IEEE Transactions on Cloud Computing, vol. 10, no. 4, pp.
2834-2847, 1 Oct.-Dec. 2022, doi: 10.1109/TCC.2020.3033373.

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

120

• Comparison between heuristic methods

• Comparison with the state of the art

• 3 scenarios at different scales:

• Light and strict response time constraints

• Average percentage cost ratio over 10 random instances:

Experimental setup

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

121

Experimental results: Comparison between heuristic methods

LS, TS and SA obtain similar or better
results compared with the RG and GA.

LS is the best on average.

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

122

Experimental results: Comparison with a state-of-the-art method

Algorithm: Best Cost Under Performance Constraint (BCPC)[1]

In the worst case, LS gains:

● time limit = exec time of BCPC: 27%
● time limit = one hour: 36%

[1]C. Lin and H. Khazaei, "Modeling and Optimization of Performance and Cost of Serverless Applications," in IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 3, pp. 615-632, 1 March 2021, doi: 10.1109/TPDS.2020.3028841.

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

123

[1] C. Lin and H. Khazaei, "Modeling and Optimization of Performance and Cost of Serverless Applications," in IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 3, pp. 615-632, 1 March 2021, doi: 10.1109/TPDS.2020.3028841.

[2] B. Kopras, B. Bossy, F. Idzikowski, P. Kryszkiewicz, and H. Bogucka. Task allocation for energy optimization in fog computing networks with latency constraints.
IEEE Transactions on Communications, 70(12):8229–8243, 2022.

[3] I. Cohen, C. F. Chiasserini, P. Giaccone, and G. Scalosub. Dynamic service provisioning in the edge-cloud continuum with bounded resources. IEEE/ACM
Transactions on Networking, pages 1–16, 2023.

[4] N. Mahmoudi and H. Khazaei, "Performance Modeling of Serverless Computing Platforms," in IEEE Transactions on Cloud Computing, vol. 10, no. 4, pp. 2834-
2847, 1 Oct.-Dec. 2022, doi: 10.1109/TCC.2020.3033373.

[5] H. Sedghani, F. Filippini, and D. Ardagna, “A Random Greedy based Design Time Tool for AI Applications Component Placement and Resource Selection in
Computing Continua,” in IEEE International Conference on Edge Computing, EDGE 2021, Chicago, IL, USA, September 5-10, 2021, IEEE, 2021, pp. 32–40. doi:
10.1109/EDGE53862.2021.00014.

References & Links

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

SPACE4AI-R

System PerformAnce and Cost Evaluation on

Cloud for AI applications Runtime

Federica Filippini

federica.filippini@polimi.it

Giuseppe Caccia

caccia@cefriel.it

124

mailto:federica.filippini@polimi.it
mailto:caccia@cefriel.it

125

AI Application Runtime Management

Application
Manager

AI-SPRINT
Runtime

Application
Architect

AI-SPRINT
Runtime

Opt. Resource
Selection

&
Component
Placement

AI-SPRINT
Runtime

Optimal
configuration

deployed.
Application in

production

AI-SPRINT
Runtime

Infrastructure

Provider & Sysops

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

126

Problem solved:

– Automatic runtime reconfiguration of resources and
components placement to minimize costs and follow
workload fluctuations

– Cope with technology constraints, performance and
privacy requirements

Motivations:

– Workload fluctuations lead to resources saturation or
underutilization

– The current production deployment needs to be
continuously monitored and adapted at runtime

Optimal Component Placement & Resource Selection

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

127

• [1] presents an ML-based auto-scaling system that can behave proactively or reactively to
adjust the number of Edge nodes in response to workload changes

• [2] addresses the service offloading and placement in the Computing Continuum through a
greedy algorithm based on the online demands prediction

• [3] proposes a general online orchestration tool that deals with dynamic workloads in
different computing environments without any prior assumption on the future system
states and future demand trends

• [4] proposes an online knapsack method for the dynamic placement and migration of AI
workflows under latency constraints

[1] Thiago Pereira da Silva et al. 2022. “Online machine learning for auto-scaling in the edge computing”. Pervasive Mob., 87, 101722.

[2] Yeting Guo et al. 2022. “PARA: Performability-aware resource allocation on the edges for cloud-native services”. Int. J. Intell. Syst., 37, 11, 8523–
8547.

[3] Xun Shao et al. 2023. An Online Orchestration Mechanism for General- Purpose Edge Computing. IEEE Trans. Serv. Comput., 16, 02, 927– 940.

[4] Qianlin Liang et al. 2023. Model-driven cluster resource management for ai workloads in edge clouds. ACM Trans. Auton. Adapt. Syst., 18, 1, Article
2.

State Of The Art

SPACE4AI-R is one of the first proposals to consider resource
contention in determining the optimal component placement for

AI applications

SPACE4AI-R considers multiple candidate neural network
deployments given by the possibility of partitioning components

at different layers according to
network and load conditions

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

128

From the design-time to the runtime problem

Resource selection and component
placement problem at design-time:

• (maximum) expected workload
• Edge devices, Cloud VMs, FaaS
• minimum-cost solution
• performance guarantees

Runtime adaptation:

• varying workload profile
• resource scaling
• component migration
• periodic execution

Random Search &
Stochastic Local Search

129

From the design-time to the runtime problem

Resource selection and
component placement
problem at design-time:

• (maximum) expected
workload

• Edge devices, Cloud VMs,
FaaS

• minimum-cost solution
• performance guarantees
Runtime adaptation:

• varying workload profile
• resource scaling
• component migration
• periodic execution

Random Search &
Stochastic Local Search

Design-time deployment Runtime deployment

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

130

AI-SPRINT runtime architecture

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

131

• Mainteinance & inspection use-case

• 7 components; 4 computational
layers

• Three scenarios:
– user’s PC at the second computational

layer; max workload = 1.8 req/s

– 2 servers in the user’s van;
max workload = 7.5 req/s

– 3 Mobile Edge Computing servers
accessed from 5G tower; max workload
= 18 req/s

• Cloud resources:

Experimental setup: Use-case analysis

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

132

• In each scenario, the four global QoS constraints are always satisfied
– A: when the workload is minimum, C1 and C2 run on the drone, increasing its utilization

– B: it is more difficult for SPACE4AI-R to determine feasible solutions due to the higher workload

– C: the response times are more stable; only the fourth path is always closer to the threshold

Experimental results: Use-case analysis

Scenario A Scenario B Scenario C

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

133

• In each scenario, the four global QoS constraints are always satisfied
– A: when the workload is minimum, SPACE4AI-R suggests to switch off the PC and execute both C1 and C2

on the drone, increasing its utilization

– B: it is more difficult for SPACE4AI-R to determine feasible solutions due to the higher workload

– C: the response times are more stable; only the fourth path is always closer to the threshold

Experimental results: Use-case analysis

Scenario A Scenario B Scenario C

Cost saving of dynamic reconfigurations
over a static placement keeping fixed the
design-time solution for the entire
application execution:

• SPACE4AI-R solution is always at least
good as the design-time one

• Up to 60% cost reduction when the
workload is at minimum

Average time to solution between 0.39
and 0.43 seconds

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

134

• Three scenarios

• Variable number of components and
resources

• Randomly-generated service demands:
– in [1, 5]s for Edge resources

– in [0.5, 2]s for Cloud VMs

– in [2, 5]s for cold and warm FaaS requests

• Variable number of (light or strict) local
and global constraints
– light: in [50, 100]s and [200, 300]s

– strict: in [7, 10]s and [20, 25]s

Experimental setup: Scalability analysis

10 randomly-generated DAGs
with branches in each scenario

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

135

• SPACE4AI-R always guarantees lower costs than the static placement

• cost savings > 60% for larger systems

• The time to solution is between 0.4 and 1.5s; almost 100x faster than SPACE4AI-D

Experimental results: Scalability analysis

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

136

• Comparison with Utilization Heuristic (UHEUR) [5,6,7]

– Scaling actions to keep the utilization within [Umin, Umax]
• Four scenarios

– 2, 4, 8 or 10 components
– reserved Edge and Cloud VMs with 9 or 10 available

instances
– service demand in [0.2, 0.6] s on Edge and [0.1, 0.55] s on

Cloud
– a local constraint on each component, threshold between

2x and 2.5x the demand
• Maximum workload: 1.8 req/s, 3.5 req/s, 7.5 req/s
• Utilization intervals:

– [Umin, Umax] = [40, 50]%
– [Umin, Umax] = [50, 60]%
– [Umin, Umax] = [60, 80%]

Experimental setup: Comparison with a state-of-the-art method

[5] A. Wolke and G. Meixner. “Twospot: A cloud platform for scaling out web ap- plications dynamically”. In
Towards a Service-Based Internet: Third European Conference, ServiceWave 2010, Ghent, Belgium, December 13-
15, 2010. Proceedings 3, pages 13–24. Springer, 2010.
[6] X. Zhu, D. Young, et al. “1000 islands: an integrated approach to resource management for virtualized data
centers”. Cluster Computing, 12:45–57, 2009.
[7] AWS Elastic Beanstalk. https://aws.amazon.com/elasticbeanstalk/, 2023. Accessed: (24/10/2023).

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

137

Experimental results: Comparison with a state-of-the-art method

[Umin, Umax] = [40, 50]% [Umin, Umax] = [50, 60]% [Umin, Umax] = [60, 80]%

UHEUR incurs in a number of
response times constraints violations

between 1.8% and 35% when the
load is high

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

138

[1] Thiago Pereira da Silva et al. 2022. “Online machine learning for auto-scaling in the edge computing”. Pervasive Mob., 87, 101722.

[2] Yeting Guo et al. 2022. “PARA: Performability-aware resource allocation on the edges for cloud-native services”. Int. J. Intell. Syst., 37, 11, 8523–8547.

[3] Xun Shao et al. 2023. An Online Orchestration Mechanism for General- Purpose Edge Computing. IEEE Trans. Serv. Comput., 16, 02, 927– 940.

[4] Qianlin Liang et al. 2023. Model-driven cluster resource management for ai workloads in edge clouds. ACM Trans. Auton. Adapt. Syst., 18, 1, Article 2.

[5] A. Wolke and G. Meixner. “Twospot: A cloud platform for scaling out web ap- plications dynamically”. In Towards a Service-Based Internet: Third European
Conference, ServiceWave 2010, Ghent, Belgium, December 13-15, 2010. Proceedings 3, pages 13–24. Springer, 2010.

[6] X. Zhu, D. Young, et al. “1000 islands: an integrated approach to resource management for virtualized data centers”. Cluster Computing, 12:45–57, 2009.

[7] AWS Elastic Beanstalk. https://aws.amazon.com/elasticbeanstalk/, 2023. Accessed: (24/10/2023).

[8] F. Filippini, H. Sedghani, and D. Ardagna, “SPACE4AI-R: Runtime Management Tool for AI Applications Component Placement and Resource Selection in
Computing Continua,” in 2023 IEEE/ACM 16th International Conference on Utility and Cloud Computing (UCC ’23), (to appear) 2023, pp. 1–7, isbn: 979-8-4007-
0234-1/23/12. doi: 10.1145/3603166.3632560.

References & Links

AI-SPRINT MOOC - Optimization & runtime
management of AI applications

	Slide 1
	Slide 2: Beyond Virtual Machines …
	Slide 3: Problem
	Slide 4: Analogy with the Real World
	Slide 5: Real-World Solution
	Slide 6: Docker Containers
	Slide 7: Containers
	Slide 8: Containers vs Virtual Machines
	Slide 9: Containers or Virtual Machines?

	Slide 10: What is Docker?
	Slide 11: Docker
	Slide 12: Docker Components
	Slide 13: Docker Engine architecture

	Slide 14: Installing Docker Engine
	Slide 15: Docker Engine Basics
	Slide 16: What can you do with Docker Engine?
	Slide 17: Docker Hub
	Slide 18: Docker 101: Containers (1)
	Slide 19: Docker 101: Images (1)
	Slide 20: Docker 101: Images (2)
	Slide 21: Docker 101: Containers (2)
	Slide 22: Docker 101: Image Building
	Slide 23: Docker 101: Dockerfile (1)
	Slide 24: Docker 101: Dockerfile (2)
	Slide 25: Usage Example: Docker-based CI

	Slide 26: Microservices (I)
	Slide 27: Microservices (II)
	Slide 28: Microservices Death Stars
	Slide 29: Container Management Platforms

	Slide 30: Kubernetes
	Slide 31
	Slide 32: Cloud Services and Applications
	Slide 33: Object-Oriented Storage Systems

	Slide 34: Abstracting Computing
	Slide 35: AWS Lambda
	Slide 36: About the AWS Lambda Runtime Environment (I)
	Slide 37: AWS Lambda: Triggers
	Slide 38: AWS Lambda: Monitoring
	Slide 39: AWS Lambda: Execution Types
	Slide 40: AWS Lambda: Throttling
	Slide 41: AWS Lambda: CloudWatch Logs
	Slide 42: Stateful Lambda functions
	Slide 43: Peeking behind the curtains of AWS Lambda
	Slide 44: Serverless Application
	Slide 45: Exposing Functions to the Internet
	Slide 46: API Gateway
	Slide 47: Serverless Architecture Examples
	Slide 48: Serverless Web Application Architecture
	Slide 49: Beware of the costs
	Slide 50
	Slide 51: AI Application Design Workflow
	Slide 52: AI-SPRINT Design
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57: AI-SPRINT Design Demo: Application Preparation and Design
	Slide 58
	Slide 59: References & Links
	Slide 60
	Slide 61: AI Application Design Workflow
	Slide 62: AI Application Design Workflow
	Slide 63: Application Deployment
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Cloud Continuum Support
	Slide 68: Application and Infrastructure deployment
	Slide 69: Application and Infrastructure deployment
	Slide 70: References & Links
	Slide 71
	Slide 72: Outline
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88: AI Application Design Workflow
	Slide 89: AI Application Design Workflow
	Slide 90: Performance modeling
	Slide 91: Sample use-case application
	Slide 92: Design-time and runtime optimization
	Slide 93: Design-time and runtime optimization
	Slide 94: AI-SPRINT tools
	Slide 95: OSCAR-P
	Slide 96: AI Application Design Workflow
	Slide 97: Automatic Application Profiling and ML Models Training
	Slide 98: State Of The Art
	Slide 99: State Of The Art
	Slide 100: OSCAR-P
	Slide 101: OSCAR-P
	Slide 102: OSCAR-P
	Slide 103: OSCAR-P
	Slide 104: OSCAR-P
	Slide 105: Experimental setup
	Slide 106: Experimental results: Interpolation
	Slide 107: Experimental results: Interpolation
	Slide 108: Experimental results: Extrapolation
	Slide 109: References & Links
	Slide 110: SPACE4AI-D
	Slide 111: AI Application Design Workflow
	Slide 112: Optimal Component Placement & Resource Selection
	Slide 113: State Of The Art
	Slide 114: SPACE4AI-D
	Slide 115: SPACE4AI-D
	Slide 116: SPACE4AI-D
	Slide 117: Application components model and QoS requirements
	Slide 118: Resources model and system costs
	Slide 119: Resources model and system costs
	Slide 120: Experimental setup
	Slide 121: Experimental results: Comparison between heuristic methods
	Slide 122: Experimental results: Comparison with a state-of-the-art method
	Slide 123: References & Links
	Slide 124: SPACE4AI-R
	Slide 125: AI Application Runtime Management
	Slide 126: Optimal Component Placement & Resource Selection
	Slide 127: State Of The Art
	Slide 128: From the design-time to the runtime problem
	Slide 129: From the design-time to the runtime problem
	Slide 130: AI-SPRINT runtime architecture
	Slide 131: Experimental setup: Use-case analysis
	Slide 132: Experimental results: Use-case analysis
	Slide 133: Experimental results: Use-case analysis
	Slide 134: Experimental setup: Scalability analysis
	Slide 135: Experimental results: Scalability analysis
	Slide 136: Experimental setup: Comparison with a state-of-the-art method
	Slide 137: Experimental results: Comparison with a state-of-the-art method
	Slide 138: References & Links

