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Beyond Virtual Machines ...

* Virtual machines have introduced numerous
advantages:

— Server consolidation, isolation between applications, etc.
* But:

— Virtual machine images are heavy and specific for each
hypervisor.

— They take (little) time to start.
— Virtualization overhead

 What if you could run processes on the same
host in isolation and securely?




Problem

* Developing distributed applications requires different

OS, programming languages, execution
environments, libraries, etc. and can be deployed on

multiple platforms.
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Analogy with the Real World

Do | worry about Can | transport quickly
how goods interact and smoothly

(e.g. coffee beans (e.g. from boat to train
next to spices) to truck)
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Real-World Solution

Marc Levinson
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Docker Containers
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Containers

* A container is an encapsulation of an entire file
system that contains everything needed to run an
application (code, libraries, OS, tools, etc.)

* Instead of emulating hardware (such as VMs) they

use technologies such as cgroups and Linux kernel
namespaces to create the containers.

* Container Technologies:
— LXC —
— Docker -
—rkt—



https://linuxcontainers.org/
https://www.docker.com/
https://coreos.com/rkt/

Containers vs Virtual Machines
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Containers

* x86 con Linux 3.2+ 6 2.6.32+ para Fedora, CentQS, etc.

Containers (PROS)

Smaller image size
Instant execution
No virtualization overhead

Encapsulates all
dependencies, ensuring
correct execution

Write Once Run Anywhere*

Containers (CONS)

Unable to run Windows on
Linux

Security isolation
* Host kernel sharing



Containers or Virtual Machines?

* For Linux virtualization scenarios on Linux, containers
can offer a very good advantage over virtual
machines

* In full virtualization scenarios (e.g. Windows over
Linux), virtual machines must be used.

* In the field of Cloud Computing, virtual machines are
used as computing capacity on which multiple
containers with the applications are then executed.

— Take advantage of the multiple vCPUs of a virtual machine.




What is Docker? -&*docker

Docker —

An open platform for developers and system
administrators to build, ship and run distributed
applications.

Package an application with all its dependencies (OS,
libraries, applications, etc.) to be executed on
different platforms.

— Objective: Fast, consistent delivery of applications

Deploy application runtime environments quickly
and repeatably.



https://www.docker.com/
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The Docker Platform
Docker Engine

Docker Hub

Build, Ship, and Run

— https://www.zdnet.com/article ‘i‘ 5]

/docker-is-in-deep-trouble/

Developers

Docker has had
spectacular
growth in recent

years.

Many adoption
scenarios.
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https://www.zdnet.com/article/docker-is-in-deep-trouble/
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Docker Components

Docker consists of
an ecosystem of
tools around
Docker Engine.

OCI (Open
Container
Initiative)

— https://www.openc

ontainers.org/

Components
Docker for Mac Docker for Docker for Linux
A native application using Windows Install Docker on a

computer which already
has a Linux distribution

the macOS sandbox
security model which

A native Windows
application which delivers

delivers all Docker tools to all Docker tools to your installed.

your Mac. Windows computer.

Docker Engine

Create Docker images and run Docker containers.

As of v1.12.0, Engine includes swarm mode container orchestration features.

Docker Hub Docker Cloud

A hosted reqistry service for managing and A hosted service for building, testing, and
building images. deploying Docker images to your hosts.
Docker Trusted Registry Docker Universal Control Plane
[DTR] stores and signs your images. [UCP] Manage a cluster of on-premises Docker

hosts as if they were a single machine.

/) Docker Machine Docker Compose
Automate container provisioning on your Define applications built using multiple
network or in the cloud. Available for containers.

Windows, macOS, or Linux.


https://www.opencontainers.org/
https://www.opencontainers.org/

Docker Engine architecture

(Ciont) DOCKER_H0ST) @—-%%

docker build -- /,.,o—l D\ockerdaemon B I @ ’
/ , - & =
) \ < Y
docker pull -| | . \ > 3
: _ : \
docker run —7 , " ’é NGiNX

e (Client and Docker
Host can coexist on
the same machine.

* Local vs remote
image registration
(e.g. Docker Hub).




Installing Docker Engine

curl -fsSL https://get.docker.com/ | sh

'y

docker

 There are other ways to install it:

— https://docs.docker.com/engine/installation/



https://get.docker.com/
https://docs.docker.com/engine/installation/

Docker Engine Basics

Image

— It contains an OS distribution (e.g. Ubuntu 22.04) and a certain configuration
of packages/applications/data determined by the creator of the image.

Docker Hub
— Image catalog and repository, accessible via CLI, web interface and REST API.
Container

— Itis aninstance of a specific image executed as an isolated process on a
specific machine (Docker Host)

Docker Host
— It is the machine that has installed Docker Engine and runs the containers.
Docker Client

— The machine from which the deployment of Docker containers is requested
(can match the Docker Host). Also corresponds to the client tool for
interacting with Docker.




What can you do with Docker
Engine?

 Manage the container lifecycle
— start, stop, kill, restart, etc.

* Manage container images

— push, pull, tag, rmi, etc.

* |nspect/access the container

— logs, attach

* And where can we find a catalog of Docker
images?




Docker Hub
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* Repositories containing Docker
container images

DESCRIPTION

° Automated Builds from GItHub Supported tags and respective Dockerfile links

* 9.8.27-jdk13-openjdk-oracle , 9.8-jdk13-openjdk-aoracle , 9-jdk13-openjdk-oracle

Add Product Review

* 9.8.27-jdk12-adoptopenjdk-hotspot , 9.8-jdk12-adaptopenidk-hotspot . 9-jdki2-adoptopenidk-hotspat

*  9.8.27-jdk12-adoptopenjdk-openid , 9.8-jdk12-adoptopenjdk-openid , 9-jdk12-adoptopenjdk-ops

* 9.0.27-jdk1l-openjdk , 9.8-jdkll-openjdk , 9-jdkll-openjdk , 9.8.27-jdk11, 9.8-jdk1l, 9-jdkil,
9.0.27, 9.8, 9

* 9.9,27-jdk11-openjdk-slim , 9.0-jdk11-openidk-slim, 9-jdkll-openjdi-slin


https://hub.docker.com/

Docker 101: Containers (1)

gmolto@felis-2 docker run alpine echo hello world
Unable to find image 'alpine:latest' locally

latest: Pulling from library/alpine

0a8498dedfd3: Pull complete

Digest: sha256:dfbd4a3aBebcaB74ebd24741044a0b33600d4523d03bBdT76e5c5986chh2d7e8
Status: Downloaded newer image for alpine:latest
hello world

Docker automatically downloads the alpine:latest image from
Docker Hub

Stores it in the Docker Engine local registry of the Docker Host
Run the container and, within it, the command, displaying the
output on the screen.




Docker 101: Images (1)

* Docker images contain (certain libraries) + Apps.
 They can be tagged and stored in different Docker registries.

gmolto@felis-2 docker images

REPQOSITORY TAG IMAGE ID CREATED
redis latest 74d81543ac97 9 days ago
jimerelo/docker-daleksay latest 5bf18c53ecdS 3 weeks ago
starefossen/node-imagemagick latest fd39b463447c 3 weeks ago
busybox latest 7968321274dc 3 weeks ago
alpine latest 88e169eal8f46 6 weeks ago
examplevotingapp_result latest 4bl1b9a%aad8e 8 weeks ago
examplevotingapp_worker latest a9%bb84ce3459 8 weeks ago
examplevotingapp_vote latest 607747fcbebc 8 weeks ago
postgres 9.4 452864725827 8 weeks ago
grycap/odisea latest 57952293921 months ago
redis alpine 9947c5a33865 months ago
python 2.7-alpine 9cBcO7chfob7 months ago
microsoft/dotnet 1.0.0-preview2-sdk  6704971aa9cl months ago
jpetazzo/trainingwheels latest db3801962211 months ago
node 5.11.8-slim cb888eaf932ad months ago

gmolto@felis-2 n I



https://docs.docker.com/registry/deploying/

Docker 101: Images (2)

* Sjze matters.

OFFICIAL REPOSITORY

pine: ¥

Tags

Scanned Images

edge

Scanned 2 months ago

— Reduction to one quarter of the size of
the original image when using Alpine
base OS as a base OS against other
distributions (e.g. Ubuntu, CentOS, etc.

FROM alpine:3.4

This image has no known vulnerabilities

This image has no known vulnerabilities

This image has no known vulnerabilities

FROM debian:jessie ——

& aw

OFFICIAL REPOSITORY

Tags
Scanned Images

7.1.2-fpm-alpine

Scanned 8 days ago

fpm
Scanned 8 days ago

7-fpm

Scanned 8 days ago

7.1-fpm
Scanned 8 days ago

7.1.2-fpm

Scanned 8 days ago

© This image has vulnerabilities

@ This image has vulnerabilities

© This image has vulnerabilities

© This image has vulnerabilities

© This image has vulnerabilities



https://hub.docker.com/r/_/alpine/
https://alpinelinux.org/

Docker 101: Containers (2)

* |Interactive session with a Docker container
— docker run -it ubuntu:22.04 bash

— This container can be used like any machine:
install applications, output to the Internet, etc.

[ ] 3. root@ddf5f65e3701: [ (docker)
gmolto@felis-2 » docker run -it ubuntu:16.04 bash

Unable to find image 'ubuntu:16.84' locally

16.64: Pulling from library/ubuntu

8aec416115fd: Pull complete

695f074e24e3: Pull complete

046d6c4Bc2a7: Pull complete

bc7277e579f0: Pull complete

2508cbcde%94b: Pull complete

Digest: sha256:71cd81252a3563ab3adBdaeceB1047b62ab5dB892ebbfbf71ct53415F29c130958

Status: Downloaded newer image for ubuntu:16.04

root@ddf5f65e3701: /# uname -a

Linux ddf5f65e3781 4.9.8-moby #1 SMP Wed Feb 8 ©9:59:13 UTC 2017 xB6_64 xB6_64 xB6_64 GNU/Linux
root@ddf5f65e3701: /# ||




Docker 101: Image Building

* Option 1:

— Modify a running container, exit the container and
save the contents of the container as a new image
that can be saved in a registry (own or
DockerHub).

— docker exec; docker commit; docker push
* Option 2:

— Create the Docker container image from a
Dockerfile, which contains a recipe for installing
the application on a given OS.




Docker 101: Dockerfile (1)

PUBLIC | AUTOMATED BUILD

/ A

Dockerfile

Dockerfile Source Repository

FROM php:5.6-apache

COPY . /var/www/html 0

gmolto [ backbone-cellar

 The Dockerfile is based on an
existing image and describes the
application installation process.
— docker build -t cellar-mem .



Docker 101: Dockerfile (2)

* Dockerfile example to install

FROM ubuntu:22.04

MAINTAINER Miguel Caballer <micaferl@upv.es>

LABEL version="1.5.1"

LABEL description="Container image to run the IM service. (http://www.grycap.upv.es/im)"
EXPOSE 8899 8800

RUN apt-get update && apt-get install -y gcc python-dbg python-dev python-pip libmysqgld-dev python-
pysqlite2 openssh-client sshpass libssl-dev libffi-dev python-requests

RUN pip install setuptools --upgrade -I
RUN pip install CherryPy==8.9.1
RUN pip install pyOpenSSL --upgrade -

RUN pip install MySQL-python msrest msrestazure azure-common azure-mgmt-storage azure-mgmt-compute
azure-mgmt-network azure-mgmt-resource

RUN pip install IM
COPY ansible.cfg /etc/ansible/ansible.cfg
CMD im_service.py



http://www.grycap.upv.es/im
https://github.com/grycap/im/blob/master/docker/Dockerfile
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Usage Example: Docker-based Cl

Developers working on the devel
branch of a GitHub repo.

A PR on the master branch oo

triggers the Cl in Jenkins/Travis. R

Docker images in Docker Hub are Dﬁi’(EL;fjg‘ége

used to execute the Jenkins jobs o

in the right execution env. GitHub R s ey
D |

Merging the PR into the master ;
branch triggers an Automated \i‘
Build to create a new Docker

image in Docker Hub. S e S

Developers




Microservices ()

Microservices is a software architecture pattern for designing
applications as a set of deployable services independently.

Services with a
single function

Decentralized
accountability

Multiple languages,
libraries, etc.

REST APl + HTTP
Stateless vs Stateful

Independent
updates by service.

A monolithic application puts all its
functionality into a single process...

... and scales by replicating the

monolith on multiple servers
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L B 4

&
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A microservices architecture puts
each element of functionality into a

separate service...

... and scales by distributing these services
across servers, replicating as needed.
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http://martinfowler.com/articles/microservices/images/sketch.png

Microservices (lIl)

* Microservices-based architectures typically use:

— Containers to encapsulate dependencies
— CI/CD strategies for frequent updates.

* Application as a set of

The Microservices Architecture co.ntalners: that run
microservices and can be
o P b A scaled and updated.
+H O
Q o<£—> 7 oo~ oog oogy
—_— —_— ‘goo ¢ ooo o ooo 2 —m
- goo ¢ - gooo ;- ooo o M
\ T ;i ooa ;1 Bee S
CLIENT LOAD BALANCER o e ; DATABASE

EACH SERVICE CAN BE SCALED INDEPENDENTLY
SERVICE IS THE SCALING UNIT




Microservices Death Stars

450 microservices 500+ microservices 500+ microservices

ETELIX

Source:

Netflix: http://www.slideshare.net/BruceWong3/the-case-for-chaos
Twitter: httns-//twitter.com/adrianco/status/4412883572612942608



Container Management Platforms

Managing multiple containers requires the use of container
management platforms.

Main

— QOpen source

e Docker Swarm
* Kubernetes

s+ Apache-Mesos

— Chronos, Marathon

e Nomad

— Managed
* Amazon ECS
* Amazon EKS
* Azure Container Service
e Google Cloud Run




Kubernetes

 Developed by Google
and released as open
source.

* Deploy, scale, and
manage containerized
applications.

* Higher learning curve
but higher adoption

Kubernetes won the Container Orchestration War E
on 29 November 2017. On that day AWS announced

their Elastic Container Service for Kubernetes (EKS).

... That's on top of Google and Azure offering

managed Kubernetes services and OpenShift being

based upon Kubernetes. 21 may 2018

Why Did Kubernetes Win? - DZone Cloud

https://dzone.com » articles » why-did-kubernetes-win
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Cloud Services and Applications

e User cloud services and applications require
management:

— Data (i.e. status, in the form of files, databases,
memory values, etc.)

— Computing (resources and execution
environments).
* Resilient/fault-tolerant application: Manage
Replication and Distribution of both data and
computing.




Object-Oriented Storage Systems

* Amazon S3 democratized access @
access to scalable, low-cost, long-
. Amazon Simple Storage
term storage through simple APIs. Service (S3)

 AWS is responsible for capacity
planning, storage provisioning, fault  * .o
tolerance, and long-term durability
through replication.




Abstracting Computing

* Cloud computing (e.g. AWS) enabled the introduction of a
virtualized representation of a classic datacenter.

— Compute capacity provisioning and, sometimes (laaS) configuration is
required for application deployment.

* Isn’tit possible to abstract the infrastructure further so that
an application could run natively on top of the Cloud without
needing to know the details of the underlying (virtualized)
infrastructure?

— Just like Amazon S3 does for storage

* Why not have something similar for computing?




AWS Lambda

* AWS Lambda (https://aws.amazon.com/es/lambda/) allows
you to run functions in response to events so that scaling is
done automatically.

— Stateless functions executed in micro-VMs with a maximum duration

of 15 minutes, written in different programming languages (Node.JS,
Python, Java, C#, Go).

— Event: Invocation of REST API, file upload to S3, etc.

Advantage: No dealing with ELBs, auto-scaling pools, EC2
instances, etc.

Disadvantage: Requires redesigning the application.
Price

— In blocks of 1 ms. Pay per use (real). No costs when not in use. Free

usage tier of 1M requests and 400,000 GB/second of computation per
month per user.



About the AWS Lambda Runtime
Environment (1)

AWS Lambda uses microVMs (Firecracker) with a series of
predefined applications on top of which it executes the code
of the Lambda functions
— For testing, there is an AMI pre-configured that
environment:

* Node.js

* Java

e Python

 .NET Core (CH)

Restrictions

— 3000 concurrent executions
— [128, 10240] MB RAM (1 MB increments)
— [512, 10240] MB of non-persistent space* in /tmp

— 15 minutes maximum runtime



https://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html

AWS Lambda: Triggers

e Event Sources:
— CloudWatch == ==

ARN - arn:aws:lambda:us-east-1:974349055189:function:scar-img-study-long

Qualifiers ¥ || Actions ¥ v

Events D
S3
DynamoDB
Kinesis

SNS

APl Gateway

Configuration

v Designer

AP| Gateway

AWS loT

Alexa Skills Kit
Alexa Smart Home
CloudFront
CloudWatch Events
CloudWatch Logs
CodeCommit
Cognito Sync Trigger
DynamoDB

Kinesis

53

SNS

Add triggers from the list on the left

\"n scar-img-study-long

([ AWS Lambda
). Amazon CloudWatch
. Amazon CloudWatch Logs

=
. Amazon DynamoDB
¢

Amazon DynamoDB Accelerator (DA
X

‘”l Amazon EC2

* Amazon 53




AWS Lambda: Monitoring

AWS Lambda Lambda > Functions > custodian-ec2-tag-running ARN - arn:aws:lambda:us-east-1:974349055188:function:custodian-ec2-tag-running
4
Dashboard Qualifiers ~ Test Actions ~
Functions
x
This function contains external libraries. Uploading a new file will override these libraries.
Code Configuration Triggers Monitoring 9
CloudWatch metrics at a glance (last 24 hours) View logs in CloudWatch@
Invocation count = Invocation duration 4] & Invocation errors e

* |t allows to detect throttling problems:

— Limit of 3000 concurrent executions per account
and per region.



AWS Lambda: Execution Types

 There are two types of execution in AWS
Lambda

* RequestResponse
— Synchronous invocation
* Async

— Asynchronous invocation. It will be used for event
processing.



https://docs.aws.amazon.com/es_es/lambda/latest/dg/API_Invoke.html
https://docs.aws.amazon.com/es_es/lambda/latest/dg/API_Invoke.html

AWS Lambda: Throttling

* Throttling occurs when the maximum number
of concurrent invocations (function or
account-level) is exceeded
— Synchronous invocation: Error HTTP 429

— Asynchronous invocation: AWS Lambda
automatically retries the event for up to 6 hours.




AWS Lambda: CloudWatch Logs

CloudWatch CloudWatch > Log Groups Streams for /aws/lambda/lambda-grayify-00
Dashboards
Alarms < Search Log Group Create Log Stream Delete Log Stream o O 8
: i x Log St 1-36
INSUEEICIENT 0 Filter: | Log Stream Name Prefix ¢ < LogStreams »
0K 9 ~|  Log Streams -~ Last Event Time -
Billing - 2017/04/27/[SLATEST)de7i0821513d4fc39¢3aa326553e3901 2017-04-27 19:11 UTC+2
Events - 2017/04/27/[SLATEST)B4fdB616adal464b9dc275b34c3alc3e 2017-04-27 18:36 UTC+2
Rules B 2017/04/27/[SLATEST)5a8d0470a10f4528a77 1c4cBd966a925 2017-04-27 18:08 UTC+2
I Logs - 2017/04/27/[SLATEST)B272a6842d7347f2bc975cd991614ad5 2017-04-27 18:04 UTC+2
CloudWatch > Log Groups > /awsflambda/lambda-grayify-00 > 2017/04/27/[$LATEST]de7f0821513d4fc39c3aa326559e3901
° . Expand all @® Row Text 5] o (7]
Centralize, store,
d h Filter events all 30s 5m 1h 6h 1d 1w custom -
Time (UTC +00:00) Message
Lambda function oot
No older events found at the moment. Retry.
. »17:11:49 START Requestld: 995842fe-2b6c-11e7-8a57-5db0f85fdb86 Version: SLATEST
I O e n t r I e S o 17:11:49 Downloading image in bucket alucloud-lambda with key 00/homer-99.png
g . ¥ 17:11:50 Converting to grayscale image in /tmp/be7c5b72-aa5a-4324-8e0e-72fd40fe575900/homer-89.png
»  17:11:56 Uploading image in bucket alucloud-lambda-out with key 00/homer-89.png
» 17:11:56 Changing ACLs for public-read for object in bucket alucloud-lambda-out with key 00/homer-29.png
» 171157 END Requestld: 885842fe-2b6c-11e7-8a57-5db0fB5fdb86
» o AT1157 REPORT Requestld: 395842fe-2b6c-11e7-8a57-5db0f85fdb86 Duration: 7441.54 ms Billed Duration: 7500 ms Memory S

No newer events found at the moment. Retry.



Stateful Lambda functions

AWS Lambda
recently
introduced
support for
Amazon EFS (NFS

as a Service)
Allows you to Access Files
introduce

| amhda 2
https://dev.to/imohd23/how-to-use-efs-with-aws-lambda-2057

Access Files

ST

persistence
between Lambda

functions. : _

* Potential use cases:
Scalable shared e https://lumigo.io/blog/unlocking-more-
file system serverless-use-cases-with-efs-and-lambda/
Serverless

supercomputing.



https://dev.to/imohd23/how-to-use-efs-with-aws-lambda-2057
https://lumigo.io/blog/unlocking-more-serverless-use-cases-with-efs-and-lambda/
https://lumigo.io/blog/unlocking-more-serverless-use-cases-with-efs-and-lambda/

Peeking behind the curtains of AWS

Lambda

~ KVM on Bare Metal EC2
" Firecracker MicroVM
MicrovM Kemel
I._ambda Sandbox
~ Execution Environment

CustomerA CustomerA
Function code fmp

Runtime ‘
Language

' Firecracker MicroVM k Customer A’s function
- MicroVM Kemel

- T Gustomer B's function
Lambda Sandbox }
/~ Execution Environment N . Managed by

- | AWS Lambda
CustomerB CustomerB| | |
Function code ftmp i

‘ Runtime
Language

FlrecraCker = https//f|recraCker‘m|Crovmg|thUb|O/ https://dl'awsstatiC.Com/Whitepapers

ARTICLE

platforms

Authors: Liang Wang, Mengyuan Li,

Publication: USENIX ATC "18: Proceedings of the 2018 USENIX Conference on Usenix

/Overview-AWS-Lambda-Security.pdf

Peeking behind the curtains of serverless

Yingian Zhang Thomas Ristenpart,

Michael Swift Authors Info & Affiliations

https://dl.acm.org/doi/10.5555/3277355.3277369

Annual Technical Conference » July 2018 » Pages 133=145


https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://firecracker-microvm.github.io/
https://dl.acm.org/doi/10.5555/3277355.3277369

Serverless Application

 Combine serverless services to produce
applications that have a very low TCO (Total

Cost of Ownership).

Storage

Amazon
S3

Internet of Things

AWS loT

Il

Compute
AWS
Lambda

‘
Streaming Analytics

Amazon Kinesis

Database

Amazon
DynamoDB

2

User Management

Amazon
Cognito

{:

Gateways

Amazon API
Gateway

14

Machine Learning

Amazon Machine
Learning

ol

Queues Messaging
Amazon Amazon
sQs SNS

 Web application
e Alexa Skill

* Chatbot

* AWS |oT Button




Exposing Functions to the Internet

Databases/
Data stores

Mobile/Web API backend
apps | “server”
T D e Ny v |l I, LS -

https://es.slideshare.net/AmazonWebServices/building-apis-with-amazon-api-gateway

e Use an API to be able to invoke the function
remotely. Challenges in:

— Manage multiple API versions
— Access authorization
— Increases in invocation traffic



https://es.slideshare.net/AmazonWebServices/building-apis-with-amazon-api-gateway

AP| Gateway

* API| Gateway -

— Creation, publication, maintenance, monitoring, protection
of APIs at any scale.

* Allows
— Create a unified API for multiple microservices.

— Protection against DDoS and throttling attacks to avoid
back-end problems

— AuthZ/AuthN requests using Cognito (and Lambda)
* Limit

— 29 seconds maximum invocation time



https://aws.amazon.com/es/api-gateway/
https://aws.amazon.com/es/api-gateway/

Serverless Architecture Examples

* Web application to obtain weather information
stored in DynamoDB offering a REST API created with
API Gateway.

— The Lambda function is executed by invoking APl methods
(GET, POST, etc.)

Example: Weather Application

Lambda is
triggered

O £ O 5

53 API GATEWAY DYNAMODB

il

Front-end code for User clicks link to get local App makes REST AP Lambda runs code to retrieve local weather
weather app hosted in 53 weather information call to endpoint information and retums data back to user




Serverless Web Application
Architecture

System
Overview

Serverless Blog
Web Application Architecture

Sometimes developers want to just build their application. You don't
want to deal with infrastructure or scaling. With AWS, you can build a
AstL o 5 web €

scalable, highly lab C
servers o maintain. Serverless web applications provide an even
faster time to market for your product.

with zero

n The user's DNS requests are served by Amazon Route

53, a highly available Domain Name System (DNS)
service. Network traffic is routed to infrastructure running in
Amazon Web Services.

D Static content is delivered by Amazon CloudFront, a
global network of edge locations. Requests are
automatically routed to the nearest edge location. The static
resources and content are stored in Amazon Simple Storage
Service (S3), a highly durable storage infrastructure designed
for mission-critical and primary data storage. §3 serves the
static content for the website such as HTML, CSS, and
Javascript files.

B A user first authenticates (either using Cognito User Pools,
an external identity provider, or your own custom developed
authentication system), the client calls out to Amazon Cognito in order
to obtain temporary credentials to call Amazon APl Gateway. Cognito
retrieves credentials from AWS STS to pass back to the user.
n AP requests are signed using the temporary credentials
obtained from Amazon Cognito and sent to the Amazon API
Gateway service which provides features such as security and
throttling for your APls. Requests are passed through the APl
Gateway where they canbe transformed and passed through to the
backend service logic.

amazon

web services

AWS Lambda provides the backend business

logic for your web application. You do not run
servers, but instead upload code to AWS which will be
invoked when a request comes into your API. The
service is highly scalable and removes the need to
manage infrastructure.
B As a fully managed database solution,

Amazon DynamoDB orovides fast, consistent
parformance as the data layer for your web applications.




Beware of the costs

@coryodaniel

be interesting to use a traditional Rewrote an #AWS APIGateway &

- i #lambda service that was costing us
VM-based architecture about $16000 / month in #elixir. Its

* Price reduction at the cost of reducing Srstqr;rgr}g in 3ﬂ?0des that cost us about
. . montn.
elasticity.

* For high service usage rates it may (9 R o)

12 million requests / hour with sub-
second latency, ~300GB of throughput /

[Eoin Shanaghy
@ Beoins d ay'

#aws #lambda can mean big cost savings in a lot of

cases but for sustained workloads, the price can be 20x #mye”)(irStatUS I#Serverless

more than plain EC2! «* <™ | wrote about why | think this & Traducir Tweet
should change. infoq.com/articles/aws-|... #serverless 19:09 - 14 ago. 2018

@InfoQ

536 Retweets 1.428 Me gusta @e @ e f?; ﬂ ‘ fQ i

Q) a4 11 536 ¥ 14 B

-+ Why AWS Lambda Pricing

{1 Has to Change for the D  Tuittea tu respuesta
witls L { it

.. Enterprise 3
. : Eodn Shanaghy
) ey Cory O’Daniel @coryodaniel - 15 ago. 2018 w
0 The metrics above are after a traffic increase we experienced after the
migration.
InfoQ
| just did the math and if we had stayed #Serverless it would have cost $30,240
‘Why AWS Lambda Pricing Has to Change for the Enterprise / month JUST FOR APl GATEWAY &3
AWS Lambda users pay only when their code is run. This can result in massive
cost savings over long-running workloads. The advantages start to disappea...

& infog.com


https://twitter.com/coryodaniel/status/1029414668681469952
https://twitter.com/eoins/status/1381643758031273988?s=20
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Al Application Design Workflow

Application  Application Application Application
Developer Architect Manager Architect

Automated
Application
Profiling &
Performance
Models Training

Application Application
Dev Deployment

AI-SPRINT AI-SPRINT
Runtime Runtime




T

AI-SPRINT Design

Problem solved:

® Automatic generation of configuration files for AI-SPRINT design and runtime tools
® High-level abstractions to constraint the application deployment
® Advanced functionalities to:

. Configure monitoring files

- Provide automatic partitioning of Al models

- Provide automatic generation of alternative
deployments

. Generate AI-SPRINT Drift Detector component

Motivations:

® Standardize the architectures of the applications

® Provide a simple interface between the user and the AI-SPRINT framework
® Need for advanced functionalities driven by Al requirements



i
AI-SPRINT Design 5

Al-SPRINT Design main contributions

Without AI-SPRINT

® The developer of the Al application must prepare
the application organizing the files in a non-
standard non-portable structure

® The developer must explicitly define each possible
deployment

® No easy ways to define QoS constraints to drive
the deployment

® The user must involve an Al expert to provide
partitioned models and to manage them

® The user is not able to easily design detection
algorithms for detecting data drift at runtime




i
AI-SPRINT Design

Al-SPRINT Design main contributions

With AI-SPRINT

® The developer of the Al application must prepare ® Simple interface to provide application
the application organizing the files in a non- components and workflow following a well-
standard non-portable structure defined template

® The developer must explicitly define each possible ® The application architect easily defines the
deployment available resources

® No easy ways to define QoS constraints to drive ® Alternative deployments are automatically
the deployment generated

® The user must involve an Al expert to provide ® High-level abstractions to define QoS constraints
partitioned models and to manage them ® SPACE4AI-D Partitioner allows automatic

® The user is not able to easily design detection partitioning of neural networks
algorithms for detecting data drift at runtime ® Automatic design of runtime drift detection

algorithms can be enabled



VING

Mask detection application

iNetwork Domaind [ |Computational Layer| —— * Assignment compatibility a;

Network Domain 1

Computational Layer 1 Computational Layer 2 :
(Rl bt A e A
: I — ;

28

i | mdxlarge  md.large : md.xlarge  md.large
- \ / | ‘

: I iy \ /

e A | R Jeseanaanal
\ / \ i
A ! A /
Vo Vo
C1 c2

images batch.—> (Blurry Faces) (Mask Detector) ©c|a55|f|cat|on
@ <Pz, 812>
) Ay

Local execution time constraint:
Blurry Faces: 15 s

Global execution time constraint:
Blurry Faces + Mask Detector : 20 s



Al-SPRINT Design Input Files

VING

Input Files

mask_detection_app/
|— aisprint

deployments

designs
logs

ams

common_config
application_dag.yaml
candidate_deployments. yanl
candidate_resources.yanml

im
oscar
oscarp
pycompss
spacedai-d
L SPACE4AI-D.yanl
spacedai-r
srec
blurry-faces-onnx
|— main.py
— onnx
L— version-RFB-648.onnx
[— requirements.sys
— requirements.txt
L— utils.py
rask-detector-onnx
|— cfg
L— obj.names
— main.py
— onnx
L— yolov3-tiny.onnx
— requirements.sys

'— requirements.txt



Al-SPRINT Design Demo: Application Preparation and Design

Demo steps:
1. Generate new AI-SPRINT application named mask_detection_app
using the available Docker image and application template. Al-
SPRINT Design is available as part of the AI-SPRINT Studio.

1. Add components’ implementation, application DAG and
candidate resources files to the application project

1. Run AI-SPRINT Design

1. Inspect the generated files



http://drive.google.com/file/d/1U0h-M0HzMzWOwF8JdXZjuMWDQbjk1e4T/view

Al-SPRINT Design Result

Output Files

mask_detection_app/
|— aisprint

|— deployments

|~ base

ans

= aos_constraints_L1.yanl
qos_constraints_L2.yanl

application_dag.yanl

in

oscar
oscarp
pycompss
spacedai-d
|: qos_constraints.yaml
SPACE4AI-D.yanl
spacedai-r
src
blurry-faces-onnx -»
mask-detector-onnx -> .
— multi_cluster_gos_constraints.yanl
L— optimal_deployment
production_deployment. yanl
esigns
|— blurry-faces-onnx
[

— main.py
{— onnx

L— version-RF8-640.0nnx
|— requirements.sys

{— requirements.txt

— utils.
[— compenent_partitions.yanl

'— mask-detector-onnx
L— base
b cfg
L— obj.names
(— main.py
[— onnx
L— yolov3-tiny.onnx
[— requirements.sys
L requirenents.txt

L 1ogs

ans
common_config

in

annotations.yanl
application_dag.yanl
candidate_deployments. yanl
candidate_resources. yanl

oscar
oscarp
pycompss
spacedai-d

qos_constraints.yanl
SPACE4AT-D.yaml

spacedai-r

blurry-faces-onnx

annx
L— version-RFB-640.0nnx
requirements.sys
requirements. txt
utils.py
mask-detector-onnx

cfg
L obj.names
nain.py

onnx

— yolov3-tiny.onnx

requirements.sys
requirements. txt

www.ai-sprint-project.eu

/.. ldesigns/blurry-faces-onnx/base

1.-1./designsfmask-detector-onnx/base

NG




References & Links

Links:
GitLab repository for AI-SPRINT Studio: https://gitlab.polimi.it/ai-sprint/ai-sprint-studio

Docker container with AI-SPRINT Studio: registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio

Link to source project files: https://gitlab.polimi.it/ai-sprint/ai-sprint-examples/-
/tree/main/mask_detection local global constraints



https://gitlab.polimi.it/ai-sprint/ai-sprint-studio
http://registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio
https://gitlab.polimi.it/ai-sprint/ai-sprint-examples/-/tree/main/mask_detection_local_global_constraints
https://gitlab.polimi.it/ai-sprint/ai-sprint-examples/-/tree/main/mask_detection_local_global_constraints
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Application  Application Application Application
Developer Architect Manager Architect

é )

Automated
Application
Profiling &
Performance
Models Training

Application Application

Deployment

Al-SPRINT

. AI-SPRINT AI-SPRINT
Design

Runtime Runtime




Application  Application Application Application
Developer Architect Manager Architect

Automated .
Application Y
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Application Application
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& Infrastructure Al-SPRINT
Manager Runtime




Problem solved:
® Help Application Manager to generate component container images.
® Generate TOSCA templates with the full description of the virtual
infrastructures required by the application
e Deployment of all application components along the computing continuum

Motivations:
® Provisioning and configuring complex virtual infrastructures is a complex task

due to the multiple APl and configurations involved




ql i

TOSCARIZER main contributions

Without AI-SPRINT

® App. M. has to manually create Dockerfiles
and build/push them for all the required
architectures (AMD64, ARM64)

® App. M. has to manually create TOSCA
templates to enable the deployment of
application components that requires
advanced knowledge on TOSCA standard.

® App. Manager has to access multiple Cloud
back-ends with different interfaces (e.g.
CLI, GUI, API).



ql i

TOSCARIZER main contributions

With AI-SPRINT

® App. M. hasto manually create Dockerfiles o Container images are automatically built and
and build/push them for all the required pUShh_id {or all COFSPO?ﬁntg or;ly for tt:e needed
architectures (AMD64, ARM64) architectures used in the deployments.
® TOSCA templates are automatically generated for
® App. M. has to manually create TOSCA all the components with the exact requirements

templates to enable the deployment of specified by the application developed in the

application components that requires application description files.

advanced knowledge on TOSCA standard. ® Automated deployment/Undeployment of OSCAR
A _ services on pre-provisioned OSCAR clusters at the

App. Manager has to access multiple Cloud Edge of the network and provision whole OSCAR

back-ends with different interfaces (e.g. clusters on the available Cloud back-ends

CLI, GUI, API).



ql i

e New developed component to help Application Manager to deploy Inference
services.
o Creates the Docker images for all application components considering all
possible destination architectures (AMD64 and ARM64).
o Creates TOSCA templates to deploy, not only the inference services on
top of OSCAR clusters, but also all the needed underlying cloud

infrastructure (VMs, K8s cluster, OSCAR ...).
m Deploys the full application workflow.

o Interacts with the IM to finally deploy/undeploy all the inference
infrastructure.

T@SCA



Type of deployments: SCh
® (1) Edge device: _
o Only deploy OSCAR service &
on top of an eX|st|ng cluster. Inrastructure
® (2) Edge Node/Edge Device: anager
o Accessed via SSH. ® @ e J© ®
O KSS + OSCAR + OSCAR Function ) ) ) )
service. SSSUURI v USSR s IO .
® (3) Cloud (On-premises/Public) OSCAR
o Deploy VIVI + KSS + OSCAR + Kb ...... t ..................................
OSCAR service. AT 0. - 4 R
® (4) AWS Lambda <. ﬁ
o Dep Io FaaS function. T ... S ol I .
O USlng SCAR Cloud . s:Xn

amazon
webservices




e |t takes as input the output of
the AI-SPRINT design tool +
o Physical nodes:
B MinlO credentials
® |n case of edge device
B SSH credentials
® |n case of edge node

B AWSS3 info
® |n case of Lambda
o IM auth file:

B Cloud Credentials

common_config/physical nodes.yaml

Physical Nodes

Manager ———

Cloud providers
Credentials

\4

Computationallayers:
computationallayerl:
numper: 1
Resources:
resourcel:
name: RaspPi
minio:
endpoint: https://minio.oscar.net
access_key: minio
secret key: pass
oscar:

name: oscar-test

im/auth.dat

id = host =

one; type = OpenNebula; server:2633; username = user; password = pass
id = oscarl; type = OSCAR; host = https://oscar.net; username = user; password = pass
type = InfrastructureManager; username = user; password = pass
type = EC2; username = AK; password = SK




-

1.

Demo steps:

~

Build & push the Docker images for
all the components / partitions
Create the corresponding TOSCA
files to deploy all the application
components (base or optimal cases)
Perform the deployment through
the IM

Test the application workflow
Undeploy infrastructures.

mask_detection_v1



http://drive.google.com/file/d/1s9Cgfb0-ts9Bv00XP3zCpzzp_G0ojopB/view

References:

[1] Miguel Caballer, German Moltd, Amanda Calatrava, and Ignacio Blanquer. Infrastructure Manager: A TOSCA-Based
Orchestrator for the Computing Continuum. Journal of Grid Computing, 21:51, 9 2023.
https://link.springer.com/article/10.1007/s10723-023-09686-7

Links:
GitLab repository: https://gitlab.polimi.it/ai-sprint/toscarizer

Integrated in docker AI-SPRINT Studio container: registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio



https://link.springer.com/article/10.1007/s10723-023-09686-7
https://gitlab.polimi.it/ai-sprint/toscarizer
http://registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio
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COMPSs overview

Dislib overview

The ds-array data structure
Supported methods

Some results

Machine learning basics

Typical workflow in dislib
Sample code: C-SVM
Browsing the dislib website




The application developer provides a sequential Python script whose functions are annotated through decorators;
these annotations are used by the runtime to run those parts of code as asynchronous parallel tasks code.
These annotations describe the type of parameters and constraints on the resources. PyCOMPSs also provides a set of

APIs to control the flow of the applications (fault tolerance and synchronisation points).

PyCOMPSs processes the information provided by the user through Python decorators and generates a dependency

graph.

@constraint(computing_units="${ComputingUnits}")
@task(x_list={Type: COLLECTION_IN, Depth: 2},
y_list={Type: COLLECTION_IN, Depth: 2}
id_list={Type: COLLECTION_IN, Depth: 2}
returns=4)
def _train{x_list, y_list, id_list, random_state, **params):
X, ¥y, ids = _merge(x_list, y_list, id_list)

clf = SVC(random_state=random_state, **params)
clf.fit(X=x, y=y.ravel())

sup = x[clf.support_]
start, end = 8, @
sv = []

for xi in x_list[e]:
end += xi.shape[1]
sv.append(sup[:, start:end])
start = end

sv_labels = y[clf.support_]
sv_ids = ids[clf.support_]

return sv, sv_labels, sv_ids, clf

Task Dependecy Graph

Computing infrastructure

Cloud ' gocker

Annotated i )
code - CCCf 0]
| tRerttter 22d
Java g : !
=3
COMPSs
Runtime

Task

Analysis

Resource Mgmt.
Files,

Task Execution § objects

Data Mgmt.



® dislib: Collection of machine learning algorithms
O Unified interface, inspired in scikit-learn (fit-predict) TP DBSCAN  Gaussian mixture

Based on a distributed data structure (ds-array) @ @ @
Unified data acquisition methods

¥ 155 B 165 165
Parallelism transparent to the user — 7™ f""! P
PyCOMPSs parallelism hidden u u U
.18s .14s 225
T Pl _._:‘ '-:. .._:‘ et

O OO

O Open source, available to the community
® Provides multiple methods:

O data initialization
Clustering
Classification

O OO

Model selection, ...

Ty °c %8 @ D I SLI B ‘ Ei}snarg)%%itrwegLibrary
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® 2-dimensional structure (i.e., matrix) features
O Divided in blocks (NumPy arrays) ¥

® Works as a regular Python object <« block —
O But not always stored in local memory! !

® Methods for instantiation and slicing with the same syntax of numpy
arrays:
O Internally parallelized with PyCOMPSs:
O Loading data (e.g. from a text file)
O Indexing (e.g., x[3], x[5:10]
O Operators (e.g., x.min(), x.transpose())

samples

ds-arrays can be iterated efficiently along both axes
® Samples and labels can be represented by independent distributed arrays

® Data not always in memory:

O Inherent support for out-of-core operations, enabling large data-sets




VING

® Array creation routines
O Multiple routines to create ds-arrays from
random, existing data, files, ...

® Matrix decomposition:
O Principal Component Analysis (PCA)
O QR
O TSQR
O SvD
® (lustering:
O DBSCAN
K-Means
Gaussian Mixture

O OO

Daura (Gromos)

Utilities to access arrays, scale, apply a function, ...

Classification

O CascadeSVM

O RandomForest classifier

O DecisionTree classifier
Recommendation

O Alternating least squares (ALS)
Regression

O Linear regression

O LASSO

O RandomForest regressor

O DecisionTree regressor
Neighbour queries:

O k-nearest neighbours
Model selection:

O GridSearch

O RandomizedSearch

O K-fold



600

—e— dislib 2000 —a— dislib
R 500 —v— dask-ml e : ::;E-MI
E 400 E 1000 L
= 300 =
200 . . 500 lr-——--_______‘
4896192 384 768 1536 455192 384 768 1536
Cores Cores
1 billion samples 500 million samples
50 features 100 features
2000 —e— dislib
@ 3000
.g 2000 . - .
" For very large sizes, dislib can
- — obtain results while MLIlib and
P s dask fail to finish the execution

2 billion samples
100 features




® Unsupervised
O Find unknown patterns in (unlabelled)
data

O Example: clustering

® Supervised

O Learn a decision function from a labelled

data

O Example: classification

o w

|
"~

!
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b & L b o
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Labeled data




® Based on scikit-learn
® Estimator = anything that learns from data (labelled or unlabelled)
® Two main methods:

O fit - learns something from data (e.g., a decision function)

O predict - provides new information based on a fitted model

(e.g., labels data based on the computed decision function)




Block size

1. Read input data \\

from file/s
x = load txt file("train.csv", (10, 780))

2. Instantiate estimator X test = load txt file("test.csv", (10, 780))

with parameters RN

kmeans = KMeans(n clusters=10)

3. Fit estimator kmeans.fit (x)
with training data f/d.

kmeans.predict (x test)
4. Make predictions f

on test data



VING

® |Implemented as an object, with main parameters:
O Block size: shape of a regular block
O Blocks: list of lists of NumPy ndarray (or spmatrix)
O Sparse: whether the block is sparse or not
® Methods
O Most of the methods for array creation or transformation are parallelized with PyCOMPSs:

@task (returns=np.array)

def random block(shape, seed):
np.random. seed (seed)
return np.random.random(shape)

@task (blocks={Type: COLLECTION IN, Depth: 2}, returns=np.array)
def Dblock apply axis(func, axis, blocks, *args, **kwargs):

for block in x. iterator(axis=(not axis)):
out = block apply axis(func, axis, block. blocks, *args, **kwargs)
out_blocks.append (out)

x = ds.random_array((100, 100), block size=(25, 25))
mean = ds.apply_along_axis(np.mean, 0, x)



VNG
ds-array,

shape=(n_samples, n_features)
Training samples.
Yy :

Set of tuples (x_data, y_data) that
ds-array, shape=(n_samples, 1) are partitions of x and y horizontally
_ CLa LRI ©ha edp with parts of both samples.
while not self. check finished():
self. do_iteration(x, y, ids_list)
if self.check convergence:

self. check convergence and update w()
self. print iteration()

return se def do_iteration(self, x, y, ids_list)

# first level

for partition, id bk in zip( pairedfpartition(x, y), ids list):
x data =

partition[0]. blocks
y data partition([1l]. blocks
_tmp =

_train(x data, y data, ids, self.random state, **pars)
sv, sv_labels, sv_ids, self. clf = tmp
g.append((sv, sv_labels, sv_ids))
# reduction

while len(g) > arity:
x data =

gl:arity]

_tmp =

_train(x data, y data, ids, self.random state, **pars)
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PyCOMPSs collections

from sklearn.svm import SVC

@task (x list={Type: COLLECTION IN, Depth: 2},
y_list={Type: COLLECTION IN, Depth: 2},
id list={Type: COLLECTION IN, Depth: 2},

leverages returns=4)
Scikit-learn def _train(x list, y list, id list, random state, **params):
IKI X, y, ids = merge(x list, y list, id list)

\\\““—--p-clf = SVC(random state=random state, **params)

clf.fit (X=x, y=y.ravel())

sup = x[clf.support ]
start, end = 0, 0
sv = []

for xi in x 1list[0]:
end += xi.shape[l]
sv.append (sup[:, start:end])
start = end

sv_labels = y[clf.support ]
sv_ids = ids[clf.support_]

return sv, sv_labels, sv_ids, clf



T

import dislib as ds
from dislib.classification import CascadeSVM
from dislib.utils import shuffle
def main() :
x ij, y ij = ds.load svmlight file("./C-SVM/datasets/train",
block size=(5000, 22), n features=22, store sparse=True)
csvm = CascadeSVM(c=10000, gamma=0.01)

csvm.fit(x_ij, y ij)

if name_ == "_main_ ":
main ()
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O [ ] COMPSs Tusks @ csvm_ijcnn.py_comzss_trace_1611237980.prv
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Custom palette
- [data. 0.])_read_svmlight

[clas sification.csvm.base.]_gen_ids
- [data.array.]_filter_block

“ [classification.csvm.base.]_train

Data acquisition
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predicting the response time of application components on the candidate resourc

conftigurations
Why? To support the selection of the optimal placement, minimizing costs and

guaranteeing performance constraints

How? Several strategies

nent/resource

— Analytical models (e.g., M/M/1 i
% é:)CPOn d sumptlons

— Machine Learning-based models
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e
.
urce selection & component placement problem
! Network domain d NetworkDomain2
NetworkDomain1
Computational layer | ComputationalLayer2 :NelwcrkDomainS
> Assignment compatibility ComputationalLayer1 i ComputationalLayer3 ComputationalLayerd
......... Ej
oy l S
L e
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Image pqst-

Cc3
Blade part

c4
Object

(%,5%)

Cc7
Severity

23 525y

v identification detection

image batch
° c c2
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* |Reg@urce selection & component placement problem

_®MmA/LWi~AWh racAlirrAc FA V1A A ARk AfArmARLIFARIARAL TAVvAF

omputational layer |

-3 Assignment compatibility g

—> Production deployment

 atdesign time...
— Based on the expected input workload

— To dimension the resources & avoid QoS constraints
violations

e ..and at runtime!

— In response to workload variations that induce resource
saturation/underutilization
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“Profiling and Predicting the Performance of Function as a
Service-based Applications in Computing Continua”

“A Design-time Tool for Al Applications Resource Selection in
Computing Continua”

“A Runtime Management Tool for Al Applications Component
Placement and Resource Scaling in Computing Continua”




COMPUTING CONTINUUM
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Federica Filippini, Enrico Galimberti

{name}.{lastname}@polimi.it

95


mailto:%7bname%7d.%7blastname%7d@polimi.it

Application Application
Architect

Application  Application
Developer Architect Manager
Automated

Application

Profiling &

Application
Deployment Performance
Models Training

Application
Dev

AI-SPRINT
Runtime

AI-SPRINT
Runtime




Problefh solved:

— Automatic application performance profiling, with
parameters set declaratively in a configuration file

— Infrastructures are automatically deployed and
configured, thanks to the integration with IM

— Dataset preparation and ML models training is also
fully automated

Motivations:

— Deploying and configuring multiple infrastructures is a
complex task

— Profiling an application on multiple configurations
manually is extremely time consuming




. [1] (Serverless Benchmark Suite) aims at being the first comprehensive benchmarking
tool that systematically supports a wide array of applications and cloud resources,
including commercial providers such as AWS, Azure, and Google Cloud.

 EdgeBench [2] instead analyzes two of them, Amazon AWS Greengrass and Microsoft
Azure loT Edge, using different performance metrics, and also compares the performance
of the edge frameworks to the respective cloud-only implementations.

 DeFog [3] presents a benchmarking tool that focuses on testing an application across a
cloud-only, edge-only and cloud-edge, by comparing the performance across the different
deployments allows to gain insight on potential improvements. The tool collects metric on
the latency of the application, both for communication and computation, under normal
conditions and under stress, with the aim of understanding how the services that make up
an application can be better distributed across the computing continuum.

[1] M. Copik, G. Kwasniewski, M. Besta, et al., Sebs: A serverless benchmark suite for function-as-a-service computing, in: ICM, 2021, pp. 64—
78.

[2] A. Das, S. Patterson, M. Wittie, Edgebench: Benchmarking edge computing platforms, in: UCC, IEEE, 2018, pp. 175-180.

[3] ). McChesney, N. Wang, A. Tanwer, E. de Lara, B. Varghese, Defog: fog computing benchmarks, in: Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing, 2019, pp. 47-58.




)

r

. Ming[4] is an integrated framework for learning regressors using different algorithms
(Random Farest, Nearest Neighhar Regression, Ridse Regression, and Sunnort Vector
Regression) of microservice-based systems running in public and private clouds, with the
end goal of identifying potential sources of performance loss in complex applications.

: : moudi et
OSCAR-P is focused on benchmarking the OSCAR framework,

which can be deployed on top of any commercial cloud = it is he
cloud provider agnostic

al. [5],
conside
request

. OSCAR-P can provide the average execution time of an application
ICETCANNN v orkflow with acceptable precision (MAPE lower than 25%) even
SRR  for unseen configurations and with a limited testing campaign

n: ICPE, 2021, pp.




input files
Input files
parser
Repeat n times
o  Daw | Log2CSV
CI_uster .| Description | Single-run £ Run Lf)g i converter
configurator generator description.yaml manager retriever
. for synchronous calls training set from
for virtual clusters for physical clustars on first component single components
3 and test set from
3 v full workflow
IM MinlO [+ JMeter .
aMLLibrary
l > v 3
AWS K8s [+— OSCAR Performance Models
Cluster

Virtual cluster manager
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aisprint
deployments
designs

input files

Input files
parser

Cluster
configurator

1-dnput_files:

2 storage_bucket: "storage"

3 filename: "input-video.mp4"
4 - asynchronous:

5 batch_size: 1
number_of_batches: 1
distribution: "deterministic”
inter_upload_time: 30

9 - synchronous:
10 number_of_pre_allocated_pods: 2

6
T

11 connect_timeout_seconds: 30
12 request_timeout_seconds: 300
13 worker_nodes: 4

14- dntervals:

15~ - throughput: 2

16 number_of_threads: 2

17 duration_seconds: 600

18 ramp_up_seconds: 5

19 - components:
20- componentl:

21 parallelism: [ 1 ]

22-  component2:

23 parallelism: [ 1 ]

24 distribution: "deterministic"
25~ run:

26 test_synchronously: False

27 test_single_services: False

28 train_models: False
29 campaign_dir: "test"
30 repetitions: 1

31 cooldown_time: 60

32- other:

33 time_correction: 0

34 domain_name: "polimi-aisprint.click"
35 clean_infrastructures_before_testing:

36 clean_infrastructures_after_testing:

Physical

description
Application

description

and

virtual resources

components

Application parameters and input

data
Machine

False

False

Learning models




i

VING

Cluster configuration:

Automatically performed relying on the

Infrastructure Manager and OSCAR

Infrastructure

Vianagel

for virtual clusters for physical clusters
IM MinlO JMeter
AWS K8s [+ OSCAR
Virtual cluster manager Cluster




OSCAR-P
cluster
C1.2

Both the full application
: f C11

Run : Deployment 3 =¥ parallelism:

1 rdtri [1,2,4] [2,4,8] :

workflow and the single
components are profiled
Single-run i
description.yaml| manager
ci1 [}l c1.2
parallelism: 2

the required

RasPi VM
cluster cluster

c1 |yl C1.2
parallelism: 4

c1

VM
cluster || cluster ! Deployment 1
: [ARMB4] :
71 ;
C1 -------------------- ,
[AMD84] | |:

—— Run 3 C1.1 | C1.2

parallelism: 4 parallelism: 8 | |

L
{ Deployment 2

C1.2
[AMDB4]

A4

c1.2 |
c11 ||,

C11
[ARMB4] [AMD64]
Deployment 3 [ARM64]

C1
[ARM64, AMD64]
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ML-based performance

models generation:

Regression models:
Ridge Regression
Decision Tree
Random Forest
XGBoost
Support-Vector Regression
Stepwise
Non-Negative Least Squares

Validation techniques:
* HoldOut

* Interpolation

* Extrapolation

Feature augmentation
/ SFS

Hyperparameter tuning

—

training set from
single components
and test set from
full workflow

aMLLibrary

Performance Models
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e |2-c@mponents application:

Private Cloud Resources Public Cloud Resources
computationallaverl.......vveeey, & omputationa ILANELZ. ...,
VM1 VM2 VM3 VM4
large md.large md.xlarg m: g
!' ‘ : R U ——
. ¢ c2
 Profiling data collected 0/® fblur-faces) (mask-detector ~® - workflow

e Performance models test _ _-+ _asignment compativiity

— interpolation and extrapolation capabilities

— predicting the application response time given the
components data




blur-faces: MAPE = 3.34%

Runs
* Run #1

* Run #2
* Run #3
* Prediction
— Average

10

15 20
Cores

25 30

mask-detector: MAPE = 10.14%

Runs
= Run #1

* Run #2
* Run #3
% Prediction
— Average

0 5 10 15 20 25 30

Cores




Full workflow: MAPE = 3.13%

Runs
* Run #1

* Run #2
* Run #3
* Prediction
— Average

0 5 10 15 20 25 30

Cores

e Combined models: MAPE = 17.08%

Runs

* Run #1

* Run #2

* Run #3

* Prediction
— Average

10

15
Cores

20

25 30
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. Kwasniewski, M. Besta, et al., Sebs: A serverless benchmark suite for function-as-a-service computing, in: ICM, 2021, pp. 64—78.

[2] AlPa W
[3]1J. McChesney, N. Wang, A. Tanwer, E. de Lara, B. Varghese, Defog: fog computing benchmarks, in: Proceedings of the 4th ACM/IEEE Symposium on Edge

Computing, 2019, pp. 47-58.
[4] J. Grohmann, M. Straesser, A. Chalbani, et al., Suanming: Explainable prediction of performance degradations in microservice applications, in: ICPE, 2021, pp.

165-176.
[5] N. Mahmoudi, H. Khazaei, Temporal performance modelling of serverless computing platforms, in: WoSC, 2020, pp. 1-6.

[6] E. Galimberti, B. Guindani, F. Filippini, et al., “OSCAR-P and AMLLibrary: Performance Profiling and Prediction of Computing Continua Applications,” in
Companion of the 2023 ACM/SPEC International Conference on Performance Engineering, ser. ICPE 23 Companion, Coimbra, Portugal: Association for Computing

Machinery, 2023, pp. 139-146, isbn: 9798400700729. doi: 10.1145/3578245.3584941.
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Problefh solved:

— Automatic exploration of design alternatives to
minimize costs

— Cope with technology constraints, performance and
privacy requirements

— |dentify optimal resources and component placement
at each layer of the computing continuum

Motivations:

— Computing resources are heterogeneous

— Efficient component placement and resource allocation
are crucial to orchestrate at best the continuum
resources




VING

* | [1]@efines a serverless application workflow as a Directed Acyclic Graph (DAG) and
nronoses two heuristic algorithms to solve two ontimization nrohlems: (i) antimize the cost
of serverless applications with DAG structure under performance constraint, and (ii)

SPACE4AI-D is one of the first proposals to consider resource llocation
contention in determining the optimal component placement for otion
Al applications

d
btermine
nts, and

SPACE4AI-D considers multiple candidate neural network
deployments given by the possibility of partitioning components
at different layers according to
network and load conditions

[1] C. Lin and H. KhazaCr . - - - gmsactions on Parallel and
Distributed Systems, vol. 32, no. 3, pp 615-632, 1 I\/Iarch 2021 d0| 10. 1109/TPDS 2020 3028841

[2] B. Kopras, B. Bossy, F. Idzikowski, P. Kryszkiewicz, and H. Bogucka. Task allocation for energy optimization in fog computing networks with
latency constraints. IEEE Transactions on Communications, 70(12):8229-8243, 2022.

[3] 1. Cohen, C. F. Chiasserini, P. Giaccone, and G. Scalosub. Dynamic service provisioning in the edge-cloud continuum with bounded
resources. IEEE/ACM Transactions on Networking, pages 1-16, 2023.




Application directory
(input YAML files)
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YAML/JSON files conversion
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SPACE4AI-Parser

Production deployment
YAML file




— aisprint
deployments
designs
logs
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— common_config
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Application directory
(input YAML files)

?

—— yaml
candidate_resources.yaml
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L— auth.dat

— oscar

— oscarp

|: input_files

run_parameters.yaml

— pycompss

[— space4ai-d

SPACE4AI-D.yaml
— <p i
— B55E
|: blurry-faces-onnx
mask-detector-onnx

Private Clouc

Somputation

Time: 1

CloudResources:
- computationallLayerl
- computationallLayer2
Methods:
method1l:
name: RandomGreedy
iterations: 10
duration: 1
method2:
name: TabuSearch
startingPointNumber: 10
iterations: 10
duration: 1
specialParameters:
tabuSize: 50
score: null
method3:
name: BS
upperBoundLambda: 2
epsilon: 0.00001
Seed: 1
Verboselevel: 1
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SPACE4AI-D

f

initial solutions

+

Heuristic algorithms to reduce the
costs:
* Local Search (LS)

arch (TS)
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Al applications are modeled as Directed Acyclic Graphs

Node: Al application component
Node label: incoming load

Edge: precedence relation between
components

(p°7,6°7)

(_'st-, 626>

Edge label: <transition probability,

. | data transfer>
Performance metric: response time

Local QoS constraints: related to single components
Global QoS constraints: related to sequences of consecutive components
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Edge Resources Cloud Virtual Machines FaaS Configurations
L, L e T 5\\_1

: C Ly L i

o7 Yer O 8 é@@@ ..
. — Edge server :

: Camera drone Camera drone Operator's PC . Instance Instance2

MEC server :

 Edge devices, Cloud VMs and FaaS configurations, grouped in computational layers and
characterized by different memory capacity

e Communications happen through network domains with different access delay &
bandwidth

* Edge costs: amortized investment costs
 Cloud VM costs: per-second costs according to Cloud providers pricing models

* FaaS costs: GB-second costs depending on memory size, functions duration, total number
of invocations




FaaS Configurations

Cloud Virtual Machines
& &
: ; VM 2 VM 3 Instance1 Instance2 1

Edge Resources

Edge server
MEC server

Camera drone

Ao, Lo I
W W _J
Operator's PC

Camera drone

/ﬁesponse time computation:
* Edge & Cloud VMs: demanding time without resource contention & individual M/G/1 models

FaaS: average execution time for each component according to [4]

OR
* Machine Learning-based performance models

+ Network delays due to data transmissions

Percentage error between 10% and 30%
Mahmoudi and H. Khazaei, "Performance Modeling of Serverless Computing Platforms," in IEEE Transactions on Cloud Computing, vol. 10, no. 4 pp./

[4] N. i . i, i
\1834-2847. 1 Oct.-Dec. 2022, doi: 10.1109/TCC.2020.3033373.




Corfiparison between heuristic methods

Comparison with the state of the art
3 scenarios at different scales:

Scenario #Components #Nodes in Computational Layers (CL) #Local and global constraints
CLq CLo CLs CLg4 CLs CLg CL~»
1 7 Edge:1 Edge:3 VM:4 VM:4  FaaS:3 - - 3,3
2 10 Edge:1 Edge:4 [Edge:4 VM:4 VM:4  FaaS:4 - 4,4
3 15 Edge:1 Edge:4 Edge:5 VM:5 VM:5 VM:5  FaaS:5 55
Average percentage cost ratio over 10 random instances:

SpecifiedMethod cost — OtherMethod cost
Cost ratio = x100
OtherMethodcost
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LS, TS and SA obtain similar or better

results compared with the RG and GA.
LS is the best on average.




Algorithm: Best Cost Under Performance Constraint (BCPC)!"

. BCPCcost — LS cost IN the worst case, LS gains:
Cost ratio = x100 ) . .
LS cost . time limit = exec time of BCPC: 27%

. time limit = one hour: 36%

[1]C. Lin and H. Khazaei, "Modeling and Optimization of Performance and Cost of Serverless Applications," in IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 3, pp. 615-632, 1 March 2021, doi: 10.1109/TPDS.2020.3028841.
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(@) 7 components. (b) 10 components. (c) 15 components.




. Khazaei, "Modeling and Optimization of Performance and Cost of Serverless Applications," in IEEE Transactions on Parallel and Distributed
B2, no. 3, pp. 615-632, 1 March 2021, doi: 10.1109/TPDS.2020.3028841
[2] B. Kopras, B. Bossy, F. Idzikowski, P. Kryszkiewicz, and H. Bogucka. Task allocation for energy optimization in fog computing networks with latency constraints.
IEEE Transactions on Communications, 70(12):8229-8243, 2022.

[3]1 1. Cohen, C. F. Chiasserini, P. Giaccone, and G. Scalosub. Dynamic service provisioning in the edge-cloud continuum with bounded resources. IEEE/ACM
Transactions on Networking, pages 1-16, 2023.

[4] N. Mahmoudi and H. Khazaei, "Performance Modeling of Serverless Computing Platforms," in IEEE Transactions on Cloud Computing, vol. 10, no. 4, pp. 2834-

2847, 1 Oct.-Dec. 2022, doi: 10.1109/TCC.2020.3033373.
[5] H. Sedghani, F. Filippini, and D. Ardagna, “A Random Greedy based Design Time Tool for Al Applications Component Placement and Resource Selection in
Computing Continua,” in IEEE International Conference on Edge Computing, EDGE 2021, Chicago, IL, USA, September 5-10, 2021, IEEE, 2021, pp. 32-40. doi:

10.1109/EDGE53862.2021.00014.
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blefll solved:

— Automatic runtime reconfiguration of resources and
components placement to minimize costs and follow
workload fluctuations

— Cope with technology constraints, performance and
privacy requirements

Motivations:

— Workload fluctuations lead to resources saturation or
underutilization

— The current production deployment needs to be
continuously monitored and adapted at runtime




adjust the number of Edge nodes in response to workload changes

e [2] addresses the service offloading and placement in the Computing Continuum through a
greedy algorithm based on the online demands prediction

: [31 MY  SPACE4AI-R is one of the first proposals to consider resource
B  contention in determining the optimal component placement for
states a Al applications

e [4] prop ion of Al
workflo SPACE4AI-R considers multiple candidate neural network
deployments given by the possibility of partitioning components
[1] Thiago Pereira at different layers according to

[2] Yeting Guo et a
8547.

[3] Xun Shao et al. 28 02, 927— 940.

[4] Qianlin Liang et al. 2023. Model-driven cluster resource management for ai workloads in edge clouds. ACM Trans. Auton. Adapt. Syst., 18, 1, Article
2.

network and load conditions 37,11, 8523~




Resource selection and component
placement problem at design-time:

(maximum) expected workload
Edge devices, Cloud VMs, FaaS
minimum-cost solution
performance guarantees

Runtime adaptation:

varying workload profile
resource scaling
component migration
periodic execution

Random Search &
Stochastic Local Search
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Runtime deployment
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PTIMIZER computes the
optimal deployment based
on data collected by AMS
and save it to the AI-SPRINT

application folder

RUNTIME manager compare
the current deployed
configuration and the
optimal one provided by the
optimizer and it uses the
Toscarizer to generate the
required tosca files.

TOSCARIZER

TOSCARIZER

SPACE
4AlI-R

RUNTIME MANAGER asks
the OPTIMIZER to provide
the optimal deploymant for
the curernt runtime
conditions

RUNTIME MANAGER collects runtimes
statistics from AMS to know the
runtime status of the deployed
application:

1. Running periodic query to AMS

2. Exposing REST API endpoint AMS

uses to alert the runtime about
alarm conditions (violations)

MINIO

RUNTIME MANAGER calls
(sync/asyn) the
IM/OSCAR/SCAR/MINIO to make
deployment changes to the
application based on realtime
runtime condition and optimal
configuration




* Mainteinance & inspection use-case

e 7 components; 4 computational
layers

* Three scenarios:

— user’s PC at the second computational
layer; max workload = 1.8 req/s

— 2 servers in the user’s van;
max workload = 7.5 req/s

— 3 Mobile Edge Computing servers
accessed from 5G tower; max workload

=18 req/s
Name Cost[$/h] Number of Instances
VM1 0.41 =4
* Cloudresou [, % -
VM3 1.99 n=3
VM4 3.16 n=3

NetworkDomain1

Computational layer |

- Assignment compatibility

Network domain d Somputationaltayert ...

NetworkDomain3

alLayer? ComputationalLayer:

— Production deployment
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* In each scenario, the four global QoS constraints are always satisfied
— A:when the workload is minimum, C; and C, run on the drone, increasing its utilization
— B:itis more difficult for SPACE4AI-R to determine feasible solutions due to the higher workload
— C:theresponse times are more stable; only the fourth path is always closer to the threshold




60 1
/ . . . . \ - Scenario A
Cost saving of dynamic reconfigurations

50 - Scenario B

over a static placement keeping fixed the
P Ping Scenario C

design-time solution for the entire
application execution:

5
o

e SPACE4AI-R solution is always at least
good as the design-time one

* Up to 60% cost reduction when the
workload is at minimum

Average time to solution between 0.39 / \
and 0.43 seconds 0
\ / 0 20 40 60 80 100 120

time [min]

N
o

cost savings [%]
w
o

-
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Three scenarios

Variable number of components and
resources

Randomly-generated service demands:
— in[1, 5]s for Edge resources
— in[0.5, 2]s for Cloud VMs
— in[2, 5]s for cold and warm FaaS requests

Variable number of (light or strict) local
and global constraints

— light: in [50, 100]s and [200, 300]s

— strict:in [7, 10]s and [20, 25]s

Scenario 1 2 3
Number of components 5 10 15
CL, Drone:1 Drone:1 Drone: 1
CL, Edge: 2 Edge: 4 Edge: 5
CLs VM: 3 Edge: 4 Edge: 5
re?;ii :;dh‘l“:;'l’flra"ir CL, FaaS:2  VM:4  VM:5
4 CLs - VM: 4 VM: 5
CLg - FaaS: 4 VM: 5
CL7 - - FaaS: 5
Number of local, global constraints | 3,3 4,4 5,5

10 randomly-generated DAGs
with branches in each scenario
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0+ 0.4 1
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* SPACE4AI-R always guarantees lower costs than the static placement
e cost savings > 60% for larger systems

* The time to solution is between 0.4 and 1.5s; almost 100x faster than SPACE4AI-D
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e | Corflparison with Utilization Heuristic (UHEUR) [5,6,7]

—Scaling actions to keep the utilization within [U

*  Four scenarios

— 2,4, 8 or 10 components

— reserved Edge and Cloud VMs with 9 or 10 available
instances

— service demand in [0.2, 0.6] s on Edge and [0.1, 0.55] s on
Cloud

— a local constraint on each component, threshold between

2x and 2.5x the demand
* Maximum workload: 1.8 req/s, 3.5 req/s, 7.5 req/s

U

min? max]

o Utilization inte rva IS' [5] A. Wolke and G. Meixner. “Twospot: A cloud platform for scaling out web ap- plications dynamically”. In
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- - - 10. Proceedings 3, pages 13-24. Springer, 2010.
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