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Beyond Virtual Machines …

• Virtual machines have introduced numerous
advantages:

– Server consolidation, isolation between applications, etc.

• But:

– Virtual machine images are heavy and specific for each
hypervisor.

– They take (little) time to start.

– Virtualization overhead

• What if you could run processes on the same
host in isolation and securely?
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Problem
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• Developing distributed applications requires different
OS, programming languages, execution
environments, libraries, etc. and can be deployed on
multiple platforms.

•



Analogy with the Real World

4

http://disney.github.io/docker-training

http://disney.github.io/docker-training


Real-World Solution
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http://www.amazon.com/The-Box-Shipping-Container-Smaller/dp/0691136408

http://disney.github.io/docker-training

http://www.amazon.com/The-Box-Shipping-Container-Smaller/dp/0691136408
http://disney.github.io/docker-training


Docker Containers
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Containers

• A container is an encapsulation of an entire file 
system that contains everything needed to run an
application (code, libraries, OS, tools, etc.)

• Instead of emulating hardware (such as VMs) they
use technologies such as cgroups and Linux kernel
namespaces to create the containers.

• Container Technologies:

– LXC – https://linuxcontainers.org

– Docker  - https://www.docker.com

– rkt- https://coreos.com/rkt
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https://linuxcontainers.org/
https://www.docker.com/
https://coreos.com/rkt/


Containers vs Virtual Machines

• Containers (PROS)
– Smaller image size

– Instant execution

– No virtualization overhead

– Encapsulates all
dependencies, ensuring
correct execution

– Write Once Run Anywhere*

• Containers (CONS)
– Unable to run Windows on

Linux

– Security isolation
• Host kernel sharing

8

Virtual machine Containers

* x86 con Linux 3.2+ ó 2.6.32+ para Fedora, CentOS, etc.

MV



Containers or Virtual Machines? 

• For Linux virtualization scenarios on Linux, containers
can offer a very good advantage over virtual 
machines

• In full virtualization scenarios (e.g. Windows over
Linux), virtual machines must be used.

• In the field of Cloud Computing, virtual machines are 
used as computing capacity on which multiple
containers with the applications are then executed.

– Take advantage of the multiple vCPUs of a virtual machine.
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What is Docker?

• Docker – https://www.docker.com/

• An open platform for developers and system
administrators to build, ship and run distributed
applications.

• Package an application with all its dependencies (OS, 
libraries, applications, etc.) to be executed on
different platforms.

– Objective: Fast, consistent delivery of applications

• Deploy application runtime environments quickly
and repeatably.
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https://www.docker.com/


Docker

• Docker has had
spectacular
growth in recent
years.

• Many adoption
scenarios.

•
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• Although with difficulties 
to monetize it.

– https://www.zdnet.com/article
/docker-is-in-deep-trouble/

https://www.zdnet.com/article/docker-is-in-deep-trouble/
https://www.zdnet.com/article/docker-is-in-deep-trouble/


Docker Components

• Docker consists of
an ecosystem of
tools around
Docker Engine.

• OCI (Open 
Container 
Initiative)

– https://www.openc
ontainers.org/
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https://www.opencontainers.org/
https://www.opencontainers.org/


Docker Engine architecture

• Client and Docker 
Host can coexist on
the same machine.

• Local vs remote 
image registration
(e.g. Docker Hub).
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Installing Docker Engine

curl -fsSL https://get.docker.com/ | sh

• There are other ways to install it:
– https://docs.docker.com/engine/installation/
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https://get.docker.com/
https://docs.docker.com/engine/installation/


Docker Engine Basics

• Image

– It contains an OS distribution (e.g. Ubuntu 22.04) and a certain configuration
of packages/applications/data determined by the creator of the image. 

• Docker Hub

– Image catalog and repository, accessible via CLI, web interface and REST API.

• Container

– It is an instance of a specific image executed as an isolated process on a 
specific machine (Docker Host)

• Docker Host

– It is the machine that has installed Docker Engine and runs the containers.

• Docker Client

– The machine from which the deployment of Docker containers is requested
(can match the Docker Host). Also corresponds to the client tool for
interacting with Docker.
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What can you do with Docker 
Engine?

• Manage the container lifecycle

– start, stop, kill, restart, etc.

• Manage container images
– push, pull, tag, rmi, etc.

• Inspect/access the container
– logs, attach

• …

• And where can we find a catalog of Docker 
images?
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Docker Hub

• Repositories containing Docker 
container images

• Automated Builds from GitHub
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https://hub.docker.com

https://hub.docker.com/


Docker 101: Containers (1)

• Docker automatically downloads the alpine:latest image from
Docker Hub

• Stores it in the Docker Engine local registry of the Docker Host
• Run the container and, within it, the command, displaying the

output on the screen.
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Docker 101: Images (1)

• Docker images contain (certain libraries) + Apps.

• They can be tagged and stored in different Docker registries.
• https://docs.docker.com/registry/deploying/

19

https://docs.docker.com/registry/deploying/


Docker 101: Images (2)

• Size matters.

– Reduction to one quarter of the size of
the original image when using Alpine 
base OS as a base OS against other
distributions (e.g. Ubuntu, CentOS, etc.)
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https://hub.docker.com/r/_/alpine/
https://alpinelinux.org/

FROM debian:jessie

FROM alpine:3.4

https://hub.docker.com/r/_/alpine/
https://alpinelinux.org/


Docker 101: Containers (2)

• Interactive session with a Docker container

– docker run -it ubuntu:22.04 bash

– This container can be used like any machine: 
install applications, output to the Internet, etc.
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Docker 101: Image Building

• Option 1:

– Modify a running container, exit the container and 
save the contents of the container as a new image
that can be saved in a registry (own or
DockerHub).

– docker exec; docker commit; docker push

• Option 2:

– Create the Docker container image from a 
Dockerfile, which contains a recipe for installing
the application on a given OS.
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Docker 101: Dockerfile (1)

• The Dockerfile is based on an
existing image and describes the
application installation process.
– docker build -t cellar-mem .
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Docker 101: Dockerfile (2)

• Dockerfile example to install Infrastructure Manager
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FROM ubuntu:22.04

MAINTAINER Miguel Caballer <micafer1@upv.es>

LABEL version="1.5.1"

LABEL description="Container image to run the IM service. (http://www.grycap.upv.es/im)"

EXPOSE 8899 8800

RUN apt-get update && apt-get install -y gcc python-dbg python-dev python-pip libmysqld-dev python-
pysqlite2 openssh-client sshpass libssl-dev libffi-dev python-requests

RUN pip install setuptools --upgrade -I

RUN pip install CherryPy==8.9.1

RUN pip install pyOpenSSL --upgrade -I

RUN pip install MySQL-python msrest msrestazure azure-common azure-mgmt-storage azure-mgmt-compute 
azure-mgmt-network azure-mgmt-resource

RUN pip install IM

COPY ansible.cfg /etc/ansible/ansible.cfg

CMD im_service.py https://github.com/grycap/im/blob/master/docker/Dockerfile

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

http://www.grycap.upv.es/im
https://github.com/grycap/im/blob/master/docker/Dockerfile
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/


Usage Example: Docker-based CI

• Developers working on the devel
branch of a GitHub repo.

• A PR on the master branch
triggers the CI in Jenkins/Travis.

• Docker images in Docker Hub are 
used to execute the Jenkins jobs
in the right execution env.

• Merging the PR into the master 
branch triggers an Automated
Build to create a new Docker 
image in Docker Hub.
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Microservices (I)

• Microservices is a software architecture pattern for designing
applications as a set of deployable services independently.

26http://martinfowler.com/articles/microservices/images/sketch.png

• Services with a 
single function

• Decentralized 
accountability

• Multiple languages, 
libraries, etc.

• REST API + HTTP

• Stateless vs Stateful

• Independent 
updates by service.

http://martinfowler.com/articles/microservices/images/sketch.png


Microservices (II)

• Microservices-based architectures typically use:
– Containers to encapsulate dependencies

– CI/CD strategies for frequent updates.
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• Application as a set of 
containers that run 
microservices and can be 
scaled and updated.



Microservices Death Stars
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Container Management Platforms

• Managing multiple containers requires the use of container 
management platforms.

• Main
– Open source

• Docker Swarm

• Kubernetes

• Apache Mesos
– Chronos, Marathon

• Nomad

– Managed
• Amazon ECS

• Amazon EKS

• Azure Container Service

• Google Cloud Run
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Kubernetes

• Developed by Google 
and released as open 
source.

• Deploy, scale, and 
manage containerized
applications.

• Higher learning curve 
but higher adoption
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Cloud Services and Applications

• User cloud services and applications require
management:

– Data (i.e. status, in the form of files, databases, 
memory values, etc.)

– Computing (resources and execution
environments).

• Resilient/fault-tolerant application: Manage
Replication and Distribution of both data and 
computing.
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Object-Oriented Storage Systems

• Amazon S3 democratized access 
access to scalable, low-cost, long-
term storage through simple APIs. 

• AWS is responsible for capacity 
planning, storage provisioning, fault 
tolerance, and long-term durability 
through replication.

33

Amazon Simple Storage 
Service (S3)

Bucket with 
objects



Abstracting Computing

• Cloud computing (e.g. AWS) enabled the introduction of a 
virtualized representation of a classic datacenter.
– Compute capacity provisioning and, sometimes (IaaS) configuration is

required for application deployment.

• Isn’t it possible to abstract the infrastructure further so that
an application could run natively on top of the Cloud without
needing to know the details of the underlying (virtualized) 
infrastructure?
– Just like Amazon S3 does for storage

• Why not have something similar for computing?
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AWS Lambda

• AWS Lambda (https://aws.amazon.com/es/lambda/) allows
you to run functions in response to events so that scaling is
done automatically.
– Stateless functions executed in micro-VMs with a maximum duration

of 15 minutes, written in different programming languages (Node.JS, 
Python, Java, C#, Go).

– Event: Invocation of REST API, file upload to S3, etc.

• Advantage: No dealing with ELBs, auto-scaling pools, EC2 
instances, etc. 

• Disadvantage: Requires redesigning the application.

• Price
– In blocks of 1 ms. Pay per use (real). No costs when not in use. Free 

usage tier of 1M requests and 400,000 GB/second of computation per 
month per user.

–

35



About the AWS Lambda Runtime
Environment (I)

• AWS Lambda uses microVMs (Firecracker) with a series of
predefined applications on top of which it executes the code
of the Lambda functions
– https://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html

– For testing, there is an AMI pre-configured that 
environment:
• Node.js 

• Java

• Python

• .NET Core (C#)

• Restrictions
– 3000 concurrent executions

– [128, 10240] MB RAM (1 MB increments)

– [512 , 10240] MB of non-persistent space* in /tmp

– 15 minutes maximum runtime

–
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https://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html


AWS Lambda: Triggers

• Event Sources:

– CloudWatch
Events

– S3

– DynamoDB

– Kinesis

– SNS

– API Gateway

– …
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AWS Lambda: Monitoring

• It allows to detect throttling problems:

– Limit of 3000 concurrent executions per account
and per region. 38



AWS Lambda: Execution Types

• There are two types of execution in AWS 
Lambda

– https://docs.aws.amazon.com/es_es/lambda/late
st/dg/API_Invoke.html

• RequestResponse

– Synchronous invocation

• Async

– Asynchronous invocation. It will be used for event
processing.
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https://docs.aws.amazon.com/es_es/lambda/latest/dg/API_Invoke.html
https://docs.aws.amazon.com/es_es/lambda/latest/dg/API_Invoke.html


AWS Lambda: Throttling

• Throttling occurs when the maximum number
of concurrent invocations (function or
account-level) is exceeded

– Synchronous invocation: Error HTTP 429

– Asynchronous invocation: AWS Lambda 
automatically retries the event for up to 6 hours. 
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AWS Lambda: CloudWatch Logs

• Centralize, store, 
and search
Lambda function
log entries.

41



Stateful Lambda functions

• AWS Lambda 
recently
introduced
support for
Amazon EFS (NFS 
as a Service)

• Allows you to
introduce 
persistence
between Lambda 
functions.

• Scalable shared
file system

• Serverless
supercomputing.
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https://dev.to/imohd23/how-to-use-efs-with-aws-lambda-2057

• Potential use cases:
• https://lumigo.io/blog/unlocking-more-

serverless-use-cases-with-efs-and-lambda/

https://dev.to/imohd23/how-to-use-efs-with-aws-lambda-2057
https://lumigo.io/blog/unlocking-more-serverless-use-cases-with-efs-and-lambda/
https://lumigo.io/blog/unlocking-more-serverless-use-cases-with-efs-and-lambda/


Peeking behind the curtains of AWS 
Lambda 
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https://d1.awsstatic.com/whitepapers
/Overview-AWS-Lambda-Security.pdf

FireCracker - https://firecracker-microvm.github.io/

https://dl.acm.org/doi/10.5555/3277355.3277369

https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://firecracker-microvm.github.io/
https://dl.acm.org/doi/10.5555/3277355.3277369


Serverless Application

• Combine serverless services to produce 
applications that have a very low TCO (Total 
Cost of Ownership).

•
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Exposing Functions to the Internet

• Use an API to be able to invoke the function
remotely. Challenges in:

– Manage multiple API versions

– Access authorization

– Increases in invocation traffic
45

https://es.slideshare.net/AmazonWebServices/building-apis-with-amazon-api-gateway

https://es.slideshare.net/AmazonWebServices/building-apis-with-amazon-api-gateway


API Gateway

• API Gateway - https://aws.amazon.com/es/api-
gateway/

– Creation, publication, maintenance, monitoring, protection
of APIs at any scale.

• Allows

– Create a unified API for multiple microservices.

– Protection against DDoS and throttling attacks to avoid
back-end problems

– AuthZ/AuthN requests using Cognito (and Lambda)

• Limit
– 29 seconds maximum invocation time
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https://aws.amazon.com/es/api-gateway/
https://aws.amazon.com/es/api-gateway/


Serverless Architecture Examples

• Web application to obtain weather information
stored in DynamoDB offering a REST API created with
API Gateway.

– The Lambda function is executed by invoking API methods
(GET, POST, etc.)

–
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Serverless Web Application 
Architecture

48



Beware of the costs

https://twitter.com/coryodaniel/status/1029414668681469952
49

• For high service usage rates it may 
be interesting to use a traditional 
VM-based architecture

• Price reduction at the cost of reducing 
elasticity.

https://twitter.com/eoins/status/1381643758031273988

https://twitter.com/coryodaniel/status/1029414668681469952
https://twitter.com/eoins/status/1381643758031273988?s=20


AI-SPRINT Design
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francesco.lattari@polimi.it
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AI Application Design Workflow
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AI-SPRINT Design

Problem solved:

● Automatic generation of configuration files for AI-SPRINT design and runtime tools
● High-level abstractions to constraint the application deployment
● Advanced functionalities to:

• Configure monitoring files
• Provide automatic partitioning of AI models
• Provide automatic generation of alternative 

deployments
• Generate AI-SPRINT Drift Detector component

Motivations:

● Standardize the architectures of the applications
● Provide a simple interface between the user and the AI-SPRINT framework
● Need for advanced functionalities driven by AI requirements
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Without AI-SPRINT

• The developer of the AI application must prepare 

the application organizing the files in a non-

standard non-portable structure

• The developer must explicitly define  each possible 

deployment

• No easy ways to define QoS constraints to drive 

the deployment

• The user must involve an AI expert to provide 

partitioned models and to manage them

• The user is not able to easily design detection 

algorithms for detecting data drift at runtime

53

AI-SPRINT Design main contributions

AI-SPRINT Design



Without AI-SPRINT

• The developer of the AI application must prepare 

the application organizing the files in a non-

standard non-portable structure

• The developer must explicitly define  each possible 

deployment

• No easy ways to define QoS constraints to drive 

the deployment

• The user must involve an AI expert to provide 

partitioned models and to manage them

• The user is not able to easily design detection 

algorithms for detecting data drift at runtime
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AI-SPRINT Design main contributions

AI-SPRINT Design

With AI-SPRINT

• Simple interface to provide application 

components and workflow following a well-

defined template 

• The application architect easily defines the 

available resources

• Alternative deployments are automatically 

generated

• High-level abstractions to define QoS constraints

• SPACE4AI-D Partitioner allows automatic 

partitioning of neural networks

• Automatic design of runtime drift detection 

algorithms can be enabled
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Mask detection application

Local execution time constraint: 
Blurry Faces: 15 s

Global execution time constraint:
Blurry Faces + Mask Detector : 20 s
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AI-SPRINT Design Input Files

Input Files
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AI-SPRINT Design Demo: Application Preparation and Design

Demo steps:
1. Generate new AI-SPRINT application named mask_detection_app

using the available Docker image and application template. AI-
SPRINT Design is available as part of the AI-SPRINT Studio.

1. Add components’ implementation, application DAG and 
candidate resources files to the application project

1. Run AI-SPRINT Design

1. Inspect the generated files

http://drive.google.com/file/d/1U0h-M0HzMzWOwF8JdXZjuMWDQbjk1e4T/view


www.ai-sprint-project.eu

AI-SPRINT Design Result

Output Files
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Links:

GitLab repository for AI-SPRINT Studio: https://gitlab.polimi.it/ai-sprint/ai-sprint-studio

Docker container with AI-SPRINT Studio: registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio

Link to source project files: https://gitlab.polimi.it/ai-sprint/ai-sprint-examples/-
/tree/main/mask_detection_local_global_constraints

References & Links

https://gitlab.polimi.it/ai-sprint/ai-sprint-studio
http://registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio
https://gitlab.polimi.it/ai-sprint/ai-sprint-examples/-/tree/main/mask_detection_local_global_constraints
https://gitlab.polimi.it/ai-sprint/ai-sprint-examples/-/tree/main/mask_detection_local_global_constraints


TOSCARIZER
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AI Application Design Workflow
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AI Application Design Workflow
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Application Deployment

Problem solved:
● Help Application Manager to generate component container images.
● Generate TOSCA templates with the full description of the virtual 

infrastructures required by the application
● Deployment of all application components along the computing continuum

Motivations:
● Provisioning and configuring complex virtual infrastructures is a complex task

due to the multiple API and configurations involved
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Without AI-SPRINT

• App. M.  has to manually create Dockerfiles 

and build/push them  for all the required 

architectures (AMD64, ARM64)

• App. M. has to manually create TOSCA 

templates to enable the deployment of 

application components that requires 

advanced knowledge on TOSCA standard.

• App. Manager has to access multiple Cloud 

back-ends with different interfaces (e.g. 

CLI, GUI, API).

64

TOSCARIZER main contributions

Application Deployment



With AI-SPRINT

• Container images are automatically built and 
pushed for all components only for the needed 
architectures used in the deployments.

• TOSCA templates are automatically generated for 
all the components with the exact requirements 
specified by the application developed in the 
application description files.

• Automated deployment/Undeployment of OSCAR 
services on pre-provisioned OSCAR clusters at the 
Edge of the network and provision whole OSCAR 
clusters on the available Cloud back-ends

Without AI-SPRINT

• App. M.  has to manually create Dockerfiles 

and build/push them  for all the required 

architectures (AMD64, ARM64)

• App. M. has to manually create TOSCA 

templates to enable the deployment of 

application components that requires 

advanced knowledge on TOSCA standard.

• App. Manager has to access multiple Cloud 

back-ends with different interfaces (e.g. 

CLI, GUI, API).
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TOSCARIZER

● New developed component to help Application Manager to deploy Inference 
services.

○ Creates the Docker images for all application components considering all 
possible destination architectures (AMD64 and ARM64).

○ Creates TOSCA templates to deploy, not only the inference services on 
top of OSCAR clusters, but also all the needed underlying cloud 
infrastructure (VMs, K8s cluster, OSCAR …).
■ Deploys the full application workflow.

○ Interacts with the IM to finally deploy/undeploy all the inference 
infrastructure.
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Type of deployments:

● (1) Edge device:
○ Only deploy OSCAR service 

on top of an existing cluster. 
● (2) Edge Node/Edge Device:

○ Accessed via SSH.
○ K8s + OSCAR + OSCAR 

service.
● (3) Cloud (On-premises/Public)

○ Deploy VM + K8s + OSCAR + 
OSCAR service.

● (4) AWS Lambda
○ Deploy FaaS function.
○ Using SCAR.

Cloud Continuum Support



● It takes as input the output of 
the AI-SPRINT design tool +
○ Physical nodes:

■ MinIO credentials
● In case of edge device

■ SSH credentials
● In case of edge node

■ AWS S3 info
● In case of Lambda

○ IM auth file:
■ Cloud Credentials

Application
Manager Cloud providers 

Credentials

Physical Nodes

im/auth.dat

common_config/physical_nodes.yaml

ComputationalLayers: 

computationalLayer1:

number: 1

Resources: 

resource1:

name: RaspPi

minio:

endpoint: https://minio.oscar.net

access_key: minio

secret_key: pass

oscar:

name: oscar-test

id = one; type = OpenNebula; host = server:2633; username = user; password = pass

id = oscar1; type = OSCAR; host = https://oscar.net; username = user; password = pass

type = InfrastructureManager; username = user; password = pass

type = EC2; username = AK; password = SK

Application and Infrastructure deployment
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Application and Infrastructure deployment

Demo steps:
1. Build & push the Docker images for 

all the components / partitions
2. Create the corresponding TOSCA 

files to deploy all the application 
components (base or optimal cases)

3. Perform the deployment through 
the IM

4. Test the application workflow
5. Undeploy infrastructures.

http://drive.google.com/file/d/1s9Cgfb0-ts9Bv00XP3zCpzzp_G0ojopB/view
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• COMPSs overview

• Dislib overview 

• The ds-array data structure

• Supported methods

• Some results

• Machine learning basics

• Typical workflow in dislib

• Sample code: C-SVM

• Browsing the dislib website

Outline
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Programming Framework: PyCOMPSs

● The application developer provides a sequential Python script whose functions are annotated through decorators; 

these annotations are used by the runtime to run those parts of code as asynchronous parallel tasks code.

● These annotations describe the type of parameters and constraints on the resources. PyCOMPSs also provides a set of 

APIs to control the flow of the applications (fault tolerance and synchronisation points).

● PyCOMPSs processes the information provided by the user through Python decorators and generates a dependency 

graph.
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Dislib: parallel machine learning 

● dislib: Collection of machine learning algorithms

○ Unified interface, inspired in scikit-learn (fit-predict)

○ Based on a distributed data structure (ds-array)

○ Unified data acquisition methods

○ Parallelism transparent to the user –

PyCOMPSs parallelism hidden 

○ Open source, available to the community 

● Provides multiple methods: 

○ data initialization

○ Clustering

○ Classification

○ Model selection, ...
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Distributed array (ds-array)

● 2-dimensional structure (i.e., matrix) 

○ Divided in blocks (NumPy arrays)

● Works as a regular Python object

○ But not always stored in local memory!

● Methods for instantiation and slicing with the same syntax of numpy

arrays:

○ Internally parallelized with PyCOMPSs:

○ Loading data (e.g. from a text file)

○ Indexing (e.g., x[3], x[5:10]

○ Operators (e.g., x.min(), x.transpose())

● ds-arrays can be iterated efficiently  along both axes

● Samples and labels can be represented by independent distributed arrays

● Data not always in memory:

○ Inherent support for out-of-core operations, enabling large data-sets
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Supported methods

● Array creation routines

○ Multiple routines to create ds-arrays from 

random, existing data, files, ...

● Utilities to access arrays, scale, apply a function, ...

● Matrix decomposition:

○ Principal Component Analysis (PCA)

○ QR

○ TSQR

○ SVD

● Clustering:

○ DBSCAN

○ K-Means

○ Gaussian Mixture

○ Daura (Gromos) 

● Classification

○ CascadeSVM

○ RandomForest classifier

○ DecisionTree classifier

● Recommendation

○ Alternating least squares (ALS)

● Regression

○ Linear regression

○ LASSO

○ RandomForest regressor

○ DecisionTree regressor 

● Neighbour queries:

○ k-nearest neighbours

● Model selection:

○ GridSearch

○ RandomizedSearch

○ K-fold
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dislib sample results - K-means clustering
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Machine Learning basics

● Unsupervised

○ Find unknown patterns in (unlabelled) 

data

○ Example: clustering

● Supervised

○ Learn a decision function from a labelled 

data

○ Example: classification
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Estimators

● Based on scikit-learn

● Estimator = anything that learns from data (labelled or unlabelled)

● Two main methods:

○ fit → learns something from data (e.g., a decision function)

○ predict → provides new information based on a fitted model 

(e.g., labels data based on the computed decision function)



80

Typical workflow
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Internals: ds-array implementation

● Implemented as an object, with main parameters:

○ Block size: shape of a regular block

○ Blocks: list of lists of NumPy ndarray (or spmatrix)  

○ Sparse: whether the block is sparse or not 

● Methods

○ Most of the methods for array creation or transformation are parallelized with PyCOMPSs:
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Sample code: C-SVM
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Sample code: C-SVM
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Sample user code: C-SVM
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C-SVM Task graph
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C-SVM Tracefile
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• Goal: predicting the response time of application components on the candidate resource 
configurations

• Why? To support the selection of the optimal placement, minimizing costs and 
guaranteeing performance constraints

• How? Several strategies:

– Analytical models (e.g., M/M/1, M/G/1,…)

– Machine Learning-based models

Performance modeling

▲Limited profiling 
required

▲No training time
▲Fast execution

▼Based on assumptions 
that may not hold in 
practical scenarios

▲Accurate 
independently on 
theoretical 
assumptions

▲Specific for the current 
component/resource 
pair

▼Need to be periodically 
re-trained

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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Sample use-case application
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• Resource selection & component placement problem

– Which resources to use at each computational layer

• How many Virtual Machine instances

– Which neural network deployment to consider for each 
component

– Where to execute each component partition

• at design time…

– Based on the expected input workload

– To dimension the resources & avoid QoS constraints 
violations

Design-time and runtime optimization

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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• Resource selection & component placement problem

– Which resources to use at each computational layer
• How many Virtual Machine instances

– Which neural network deployment to consider for each 
component

– Where to execute each component partition

• at design time…

– Based on the expected input workload
– To dimension the resources & avoid QoS constraints 

violations

• …and at runtime!

– In response to workload variations that induce resource
saturation/underutilization

Design-time and runtime optimization

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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AI-SPRINT tools

“A Design-time Tool for AI Applications Resource Selection in 
Computing Continua”

“A Runtime Management Tool for AI Applications Component 
Placement and Resource Scaling in Computing Continua”

“Profiling and Predicting the Performance of Function as a 
Service-based Applications in Computing Continua”

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications



OSCAR-P

and Performance Models generation

Federica Filippini, Enrico Galimberti

{name}.{lastname}@polimi.it

95

mailto:%7bname%7d.%7blastname%7d@polimi.it


96

AI Application Design Workflow

Application 
Dev

Application 

Deployment

Application 
Developer

Application
Manager

AI-SPRINT 
Runtime

Application
Architect

Automated 

Application 

Profiling & 
Performance 

Models Training

Application
Architect

AI-SPRINT 
Runtime

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications



97

Problem solved:

– Automatic application performance profiling, with 
parameters set declaratively in a configuration file

– Infrastructures are automatically deployed and 
configured, thanks to the integration with IM

– Dataset preparation and ML models training is also 
fully automated

Motivations:

– Deploying and configuring multiple infrastructures is a 
complex task

– Profiling an application on multiple configurations 
manually is extremely time consuming

Automatic Application Profiling and ML Models Training

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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• SeBS [1] (Serverless Benchmark Suite) aims at being the first comprehensive benchmarking 
tool that systematically supports a wide array of applications and cloud resources, 
including commercial providers such as AWS, Azure, and Google Cloud. 

• EdgeBench [2] instead analyzes two of them, Amazon AWS Greengrass and Microsoft 
Azure IoT Edge, using different performance metrics, and also compares the performance 
of the edge frameworks to the respective cloud-only implementations.

• DeFog [3] presents a benchmarking tool that focuses on testing an application across a 
cloud-only, edge-only and cloud-edge, by comparing the performance across the different 
deployments allows to gain insight on potential improvements. The tool collects metric on 
the latency of the application, both for communication and computation, under normal 
conditions and under stress, with the aim of understanding how the services that make up 
an application can be better distributed across the computing continuum.

[1] M. Copik, G. Kwasniewski, M. Besta, et al., Sebs: A serverless benchmark suite for function-as-a-service computing, in: ICM, 2021, pp. 64–
78.

[2] A. Das, S. Patterson, M. Wittie, Edgebench: Benchmarking edge computing platforms, in: UCC, IEEE, 2018, pp. 175–180.

[3] J. McChesney, N. Wang, A. Tanwer, E. de Lara, B. Varghese, Defog: fog computing benchmarks, in: Proceedings of the 4th ACM/IEEE 
Symposium on Edge Computing, 2019, pp. 47–58.

State Of The Art

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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• SuanMing[4] is an integrated framework for learning regressors using different algorithms 
(Random Forest, Nearest Neighbor Regression, Ridge Regression, and Support Vector 
Regression) of microservice-based systems running in public and private clouds, with the 
end goal of identifying potential sources of performance loss in complex applications. 

• Another example of performance modelling of FaaS systems is provided by Mahmoudi et 
al. [5], which proposed the creation of a model to predict some performance metrics by 
considering the application average response time for warm and cold requests, the 
requests arrival rate, and the system expiration threshold.

[4] J. Grohmann, M. Straesser, A. Chalbani, et al., Suanming: Explainable prediction of performance degradations in microservice applications, in: ICPE, 2021, pp. 
165–176.

[5] N. Mahmoudi, H. Khazaei, Temporal performance modelling of serverless computing platforms, in: WoSC, 2020, pp. 1–6.

State Of The Art

OSCAR-P is focused on benchmarking the OSCAR framework, 
which can be deployed on top of any commercial cloud → it is 

cloud provider agnostic

OSCAR-P can provide the average execution time of an application 
workflow with acceptable precision (MAPE lower than 25%) even 

for unseen configurations and with a limited testing campaign

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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OSCAR-P

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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OSCAR-P

Required input:

• Physical and virtual resources
description

• Application components
description

• Application parameters and input
data

• Machine Learning models
hyperparameters

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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OSCAR-P

Cluster configuration:

Automatically performed relying on the
Infrastructure Manager and OSCAR

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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OSCAR-P

Component profiling:

Both the full application
workflow and the single
components are profiled
on the required
resources

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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OSCAR-P

ML-based performance
models generation:

Regression models:
• Ridge Regression
• Decision Tree
• Random Forest
• XGBoost
• Support-Vector Regression
• Stepwise
• Non-Negative Least Squares

Validation techniques:
• HoldOut
• Interpolation
• Extrapolation

Feature augmentation
/ SFS

Hyperparameter tuning

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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• 2-components application:

• Profiling data collected on the single components & the entire workflow

• Performance models tested on: 

– interpolation and extrapolation capabilities

– predicting the application response time given the 
components data

Experimental setup

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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• blur-faces: MAPE = 3.34% • mask-detector: MAPE = 10.14%

Experimental results: Interpolation

AI-SPRINT MOOC - Optimization & runtime management of AI 
applications
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• Full workflow: MAPE = 3.13% • Combined models: MAPE = 17.08%

Experimental results: Interpolation

AI-SPRINT MOOC - Optimization & runtime management of AI 
applications
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• Training set • Predictions: MAPE = 9.75%

Experimental results: Extrapolation

AI-SPRINT MOOC - Optimization & runtime management of AI 
applications
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[1] M. Copik, G. Kwasniewski, M. Besta, et al., Sebs: A serverless benchmark suite for function-as-a-service computing, in: ICM, 2021, pp. 64–78.

[2] A. Das, S. Patterson, M. Wittie, Edgebench: Benchmarking edge computing platforms, in: UCC, IEEE, 2018, pp. 175–180.

[3] J. McChesney, N. Wang, A. Tanwer, E. de Lara, B. Varghese, Defog: fog computing benchmarks, in: Proceedings of the 4th ACM/IEEE Symposium on Edge 
Computing, 2019, pp. 47–58.

[4] J. Grohmann, M. Straesser, A. Chalbani, et al., Suanming: Explainable prediction of performance degradations in microservice applications, in: ICPE, 2021, pp. 
165–176.

[5] N. Mahmoudi, H. Khazaei, Temporal performance modelling of serverless computing platforms, in: WoSC, 2020, pp. 1–6.

[6] E. Galimberti, B. Guindani, F. Filippini, et al., “OSCAR-P and AMLLibrary: Performance Profiling and Prediction of Computing Continua Applications,” in 
Companion of the 2023 ACM/SPEC International Conference on Performance Engineering, ser. ICPE ’23 Companion, Coimbra, Portugal: Association for Computing 
Machinery, 2023, pp. 139–146, isbn: 9798400700729. doi: 10.1145/3578245.3584941.

References & Links

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications



SPACE4AI-D

System PerformAnce and Cost Evaluation on 

Cloud for AI applications Design

Federica Filippini, Hamta Sedghani

{name}.{lastname}@polimi.it

110

mailto:%7bname%7d.%7blastname%7d@polimi.it


111

AI Application Design Workflow

Application
Manager

AI-SPRINT 
Runtime

Application
Architect

AI-SPRINT 
Runtime

Opt. Resource 
Selection

& 
Component 
Placement 

AI-SPRINT 
Runtime

Optimal 
configuration 

deployed.
Application in 

production

AI-SPRINT 
Runtime

Infrastructure 

Provider & Sysops

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications



112

Problem solved:

– Automatic exploration of design alternatives to 
minimize costs

– Cope with technology constraints, performance and 
privacy requirements 

– Identify optimal resources and component placement
at each layer of the computing continuum

Motivations:

– Computing resources are heterogeneous

– Efficient component placement and resource allocation 
are crucial to orchestrate at best the continuum 
resources

Optimal Component Placement & Resource Selection

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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• [1] defines a serverless application workflow as a Directed Acyclic Graph (DAG) and 
proposes two heuristic algorithms to solve two optimization problems: (i) optimize the cost 
of serverless applications with DAG structure under performance constraint, and (ii) 
optimize the performance under a budget constraint

• [2] develops a Mixed Integer Non-Linear Programming (MINLP) to solve a task allocation 
problem among end-users’ device, fog and Cloud, minimizing the energy consumption 
while guaranteeing delay constraints 

• [3] tackles the service-placement problem to minimize migration, bandwidth and 
computation costs while fulfilling service performance requirements. Authors determine 
the minimum number of CPU resources required to meet the latency requirements, and 
formalize the service placement problem as an Integer Linear Program (ILP)

[1] C. Lin and H. Khazaei, "Modeling and Optimization of Performance and Cost of Serverless Applications," in IEEE Transactions on Parallel and 
Distributed Systems, vol. 32, no. 3, pp. 615-632, 1 March 2021, doi: 10.1109/TPDS.2020.3028841.

[2] B. Kopras, B. Bossy, F. Idzikowski, P. Kryszkiewicz, and H. Bogucka. Task allocation for energy optimization in fog computing networks with 
latency constraints. IEEE Transactions on Communications, 70(12):8229–8243, 2022.

[3] I. Cohen, C. F. Chiasserini, P. Giaccone, and G. Scalosub. Dynamic service provisioning in the edge-cloud continuum with bounded 
resources. IEEE/ACM Transactions on Networking, pages 1–16, 2023.

State Of The Art

SPACE4AI-D is one of the first proposals to consider resource 
contention in determining the optimal component placement for 

AI applications

SPACE4AI-D considers multiple candidate neural network 
deployments given by the possibility of partitioning components 

at different layers according to 
network and load conditions

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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SPACE4AI-D

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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SPACE4AI-D

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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SPACE4AI-D

Random Greedy (RG) algorithm to 
generate a pool of good-quality 
initial solutions

+

Heuristic algorithms to reduce the 
costs:
• Local Search (LS)
• Tabu Search (TS)
• Simulated Annealing (SA)
• Genetic Algorithms (Gas)

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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Application components model and QoS requirements

• AI applications are modeled as Directed Acyclic Graphs

• Performance metric: response time
• Local QoS constraints: related to single components

• Global QoS constraints: related to sequences of consecutive components

Node: AI application component

Node label: incoming load

Edge: precedence relation between 
components

Edge label: <transition probability, 
data transfer>

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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• Edge devices, Cloud VMs and FaaS configurations, grouped in computational layers and 
characterized by different memory capacity

• Communications happen through network domains with different access delay & 
bandwidth

• Edge costs: amortized investment costs

• Cloud VM costs: per-second costs according to Cloud providers pricing models

• FaaS costs: GB-second costs depending on memory size, functions duration, total number 
of invocations

Resources model and system costs

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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• Edge devices, Cloud VMs and FaaS configurations, grouped in computational layers and 
characterized by different memory capacity

• Communications happen through network domains with different access delay & 
bandwidth

• Edge costs: amortized investment & mainteinance costs

• Cloud VM costs: per-second costs according to Cloud providers pricing models

• FaaS costs: GB-second costs depending on memory size, functions duration, total number 
of invocations

Resources model and system costs

Response time computation:
• Edge & Cloud VMs: demanding time without resource contention & individual M/G/1 models
• FaaS: average execution time for each component according to [4]
OR
• Machine Learning-based performance models 

+ Network delays due to data transmissions

Percentage error between 10% and 30%

[4] N. Mahmoudi and H. Khazaei, "Performance Modeling of Serverless Computing Platforms," in IEEE Transactions on Cloud Computing, vol. 10, no. 4, pp. 
2834-2847, 1 Oct.-Dec. 2022, doi: 10.1109/TCC.2020.3033373.

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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• Comparison between heuristic methods

• Comparison with the state of the art

• 3 scenarios at different scales:

• Light and strict response time constraints

• Average percentage cost ratio over 10 random instances:

Experimental setup

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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Experimental results: Comparison between heuristic methods

LS, TS and SA obtain similar or better
results compared with the RG and GA. 

LS is the best on average.

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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Experimental results: Comparison with a state-of-the-art method 

Algorithm: Best Cost Under Performance Constraint (BCPC)[1]

In the worst case, LS gains: 

● time limit = exec time of BCPC:  27%
● time limit = one hour:  36%

[1]C. Lin and H. Khazaei, "Modeling and Optimization of Performance and Cost of Serverless Applications," in IEEE Transactions 
on Parallel and Distributed Systems, vol. 32, no. 3, pp. 615-632, 1 March 2021, doi: 10.1109/TPDS.2020.3028841.

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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[1] C. Lin and H. Khazaei, "Modeling and Optimization of Performance and Cost of Serverless Applications," in IEEE Transactions on Parallel and Distributed 
Systems, vol. 32, no. 3, pp. 615-632, 1 March 2021, doi: 10.1109/TPDS.2020.3028841.

[2] B. Kopras, B. Bossy, F. Idzikowski, P. Kryszkiewicz, and H. Bogucka. Task allocation for energy optimization in fog computing networks with latency constraints. 
IEEE Transactions on Communications, 70(12):8229–8243, 2022.

[3] I. Cohen, C. F. Chiasserini, P. Giaccone, and G. Scalosub. Dynamic service provisioning in the edge-cloud continuum with bounded resources. IEEE/ACM 
Transactions on Networking, pages 1–16, 2023.

[4] N. Mahmoudi and H. Khazaei, "Performance Modeling of Serverless Computing Platforms," in IEEE Transactions on Cloud Computing, vol. 10, no. 4, pp. 2834-
2847, 1 Oct.-Dec. 2022, doi: 10.1109/TCC.2020.3033373.

[5] H. Sedghani, F. Filippini, and D. Ardagna, “A Random Greedy based Design Time Tool for AI Applications Component Placement and Resource Selection in 
Computing Continua,” in IEEE International Conference on Edge Computing, EDGE 2021, Chicago, IL, USA, September 5-10, 2021, IEEE, 2021, pp. 32–40. doi: 
10.1109/EDGE53862.2021.00014.

References & Links
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Problem solved:

– Automatic runtime reconfiguration of resources and 
components placement to minimize costs and follow 
workload fluctuations

– Cope with technology constraints, performance and 
privacy requirements

Motivations:

– Workload fluctuations lead to resources saturation or 
underutilization

– The current production deployment needs to be 
continuously monitored and adapted at runtime

Optimal Component Placement & Resource Selection

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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• [1] presents an ML-based auto-scaling system that can behave proactively or reactively to 
adjust the number of Edge nodes in response to workload changes

• [2] addresses the service offloading and placement in the Computing Continuum through a 
greedy algorithm based on the online demands prediction

• [3] proposes a general online orchestration tool that deals with dynamic workloads in 
different computing environments without any prior assumption on the future system 
states and future demand trends

• [4] proposes an online knapsack method for the dynamic placement and migration of AI 
workflows under latency constraints

[1] Thiago Pereira da Silva et al. 2022. “Online machine learning for auto-scaling in the edge computing”. Pervasive Mob., 87, 101722.

[2] Yeting Guo et al. 2022. “PARA: Performability-aware resource allocation on the edges for cloud-native services”. Int. J. Intell. Syst., 37, 11, 8523–
8547.

[3] Xun Shao et al. 2023. An Online Orchestration Mechanism for General- Purpose Edge Computing. IEEE Trans. Serv. Comput., 16, 02, 927– 940.

[4] Qianlin Liang et al. 2023. Model-driven cluster resource management for ai workloads in edge clouds. ACM Trans. Auton. Adapt. Syst., 18, 1, Article 
2.

State Of The Art

SPACE4AI-R is one of the first proposals to consider resource 
contention in determining the optimal component placement for 

AI applications

SPACE4AI-R considers multiple candidate neural network 
deployments given by the possibility of partitioning components 

at different layers according to 
network and load conditions

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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From the design-time to the runtime problem

Resource selection and component 
placement problem at design-time:

• (maximum) expected workload
• Edge devices, Cloud VMs, FaaS
• minimum-cost solution
• performance guarantees

Runtime adaptation:

• varying workload profile
• resource scaling
• component migration
• periodic execution

Random Search & 
Stochastic Local Search
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From the design-time to the runtime problem

Resource selection and 
component placement 
problem at design-time:

• (maximum) expected 
workload

• Edge devices, Cloud VMs, 
FaaS

• minimum-cost solution
• performance guarantees
Runtime adaptation:

• varying workload profile
• resource scaling
• component migration
• periodic execution

Random Search & 
Stochastic Local Search

Design-time deployment Runtime deployment

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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AI-SPRINT runtime architecture

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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• Mainteinance & inspection use-case

• 7 components; 4 computational 
layers

• Three scenarios:
– user’s PC at the second computational 

layer; max workload = 1.8 req/s

– 2 servers in the user’s van; 
max workload = 7.5 req/s

– 3 Mobile Edge Computing servers 
accessed from 5G tower; max workload 
= 18 req/s

• Cloud resources:

Experimental setup: Use-case analysis

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications



132

• In each scenario, the four global QoS constraints are always satisfied
– A: when the workload is minimum, C1 and C2 run on the drone, increasing its utilization

– B: it is more difficult for SPACE4AI-R to determine feasible solutions due to the higher workload

– C: the response times are more stable; only the fourth path is always closer to the threshold

Experimental results: Use-case analysis

Scenario A Scenario B Scenario C

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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• In each scenario, the four global QoS constraints are always satisfied
– A: when the workload is minimum, SPACE4AI-R suggests to switch off the PC and execute both C1 and C2

on the drone, increasing its utilization

– B: it is more difficult for SPACE4AI-R to determine feasible solutions due to the higher workload

– C: the response times are more stable; only the fourth path is always closer to the threshold

Experimental results: Use-case analysis

Scenario A Scenario B Scenario C

Cost saving of dynamic reconfigurations
over a static placement keeping fixed the 
design-time solution for the entire 
application execution:

• SPACE4AI-R solution is always at least 
good as the design-time one

• Up to 60% cost reduction when the 
workload is at minimum

Average time to solution between 0.39 
and 0.43 seconds

AI-SPRINT MOOC - Optimization & runtime 
management of AI applications
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• Three scenarios

• Variable number of components and 
resources

• Randomly-generated service demands:
– in [1, 5]s for Edge resources

– in [0.5, 2]s for Cloud VMs

– in [2, 5]s for cold and warm FaaS requests

• Variable number of (light or strict) local 
and global constraints 
– light: in [50, 100]s and [200, 300]s

– strict: in [7, 10]s and [20, 25]s

Experimental setup: Scalability analysis

10 randomly-generated DAGs 
with branches in each scenario

AI-SPRINT MOOC - Optimization & runtime 
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• SPACE4AI-R always guarantees lower costs than the static placement

• cost savings > 60% for larger systems

• The time to solution is between 0.4 and 1.5s; almost 100x faster than SPACE4AI-D

Experimental results: Scalability analysis

AI-SPRINT MOOC - Optimization & runtime 
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• Comparison with Utilization Heuristic (UHEUR) [5,6,7]

– Scaling actions to keep the utilization within [Umin, Umax]
• Four scenarios

– 2, 4, 8 or 10 components
– reserved Edge and Cloud VMs with 9 or 10 available 

instances
– service demand in [0.2, 0.6] s on Edge and [0.1, 0.55] s on 

Cloud
– a local constraint on each component, threshold between 

2x and 2.5x the demand
• Maximum workload: 1.8 req/s, 3.5 req/s, 7.5 req/s
• Utilization intervals:

– [Umin, Umax] = [40, 50]%
– [Umin, Umax] = [50, 60]%
– [Umin, Umax] = [60, 80%]

Experimental setup: Comparison with a state-of-the-art method 

[5] A. Wolke and G. Meixner. “Twospot: A cloud platform for scaling out web ap- plications dynamically”. In 
Towards a Service-Based Internet: Third European Conference, ServiceWave 2010, Ghent, Belgium, December 13-
15, 2010. Proceedings 3, pages 13–24. Springer, 2010.
[6] X. Zhu, D. Young, et al. “1000 islands: an integrated approach to resource management for virtualized data 
centers”. Cluster Computing, 12:45–57, 2009.
[7] AWS Elastic Beanstalk. https://aws.amazon.com/elasticbeanstalk/, 2023. Accessed: (24/10/2023).
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Experimental results: Comparison with a state-of-the-art method 

[Umin, Umax] = [40, 50]% [Umin, Umax] = [50, 60]% [Umin, Umax] = [60, 80]%

UHEUR incurs in a number of 
response times constraints violations 

between 1.8% and 35% when the 
load is high
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